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Abstract— During somatic cell nuclear transfer (SCNT), pre-
cise removal of the oocyte genetic material is critical. However,
due to the invisibility of the genetic material (spindle) under
brightfield observation and the potential displacement caused
by the movement of micropipettes, accurately positioning the
micropipette at the spindle poses a significant challenge. This
study introduces an approach for optimal spindle removal by
predicting its position. Initially, the polarization imaging system
visualized the oocyte spindle, while a Multi-Feature Adaptive
Kernel Correlation Filter (MFAKCF) algorithm tracked the
spindle with 92.84% accuracy. Subsequently, enhancements were
made to the Nonlinear Mass-Spring-Damper (NMSD) model
to simulate live oocyte mechanical characteristics. Adjustments
to NMSD model parameters simulated spindle displacement
variations under diverse experimental conditions. Finally, the
optimal spindle removal position was determined using NMSD
model to simulate the micropipette approach to the spindle
and the resulting position of spindle displacement. Experimental
validation showed that the predictive accuracy of this model
was 97.26%, with an average positional error of 0.4 µm. Using
this approach method can reduce cytoplasm loss to 4.5% and
have a 100% enucleation success rate. Thus, the proposed
prediction based optimal spindle removal position method can
effectively anticipates spindle final positions, aiding in minimizing
cytoplasmic loss during spindle removal.
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Note to Practitioners—Accurate oocyte nucleus removal is
crucial for somatic cell nuclear transfer (SCNT) but challenging
due to spindle invisibility under brightfield microscopy and
displacement caused by micropipette movements. This study
proposes a predictive method to address these issues. The
polarization imaging system was used to visualize the spindle,
and a MFAKCF tracking algorithm enabled real-time tracking.
An enhanced NMSD model simulated spindle displacement,
enabling accurate position prediction and reducing cytoplasmic
loss during removal. This method offers a reliable tool for precise
spindle removal in SCNT and broader applications in biomedical
micromanipulation.

Index Terms— Robotic micro-manipulation, single cell manip-
ulation, cell modeling, micro-vision.

I. INTRODUCTION

SOMATIC cell nuclear transfer (SCNT) plays a crucial
role in somatic cell transplantation and represents a

significant technology in the field of assisted reproductive
technology [1]. In recent years, the rapid development of
micromanipulation robots, combined with intelligent control
algorithms, has led to significant advancements in the automa-
tion of SCNT. Robotic micromanipulation technology allows
for precise control of micropipettes at a microscopic scale,
enabling high-precision manipulation of oocytes [2]. This
technology has achieved remarkable results in cell biology,
particularly in cloning [3], gene editing [4], and cell therapy
[5], providing unprecedented levels of precision. The inte-
gration of intelligent control algorithms has further enhanced
the accuracy and efficiency of robotic systems [6], greatly
accelerating the translation from basic research to clinical
applications.

Despite the potential of SCNT, a major challenge remains
the precise extraction of the spindle from the oocyte cyto-
plasm, which often leads to unnecessary cytoplasmic loss [7].
Traditional nuclear removal methods further complicate this
process due to the spindle’s invisibility, as shown in Fig. 1(a).
During the spindle removal process, after a glass micropipette
penetrates the zona pellucida and cell membrane of the oocyte,
there exists a notable distance between the micropipette’s
opening and the spindle, as shown in Fig. 1 (b). If the
micropipette pressure is reduced at this point to transfer the
spindle into the micropipette, it may cause excessive cytoplas-
mic loss between the micropipette’s opening and the spindle.
Existing studies indicate that removing excess cytoplasm
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Fig. 1. Oocyte enucleation. The schematic plot shows the non-negligible
distance between the micropipette opening and the nucleus.

significantly impacts the subsequent development of
oocytes [8]. To address this challenge, our study proposes
a comprehensive approach, including precise spindle
positioning, prediction of spindle migration, and direct
control of micropipette movement to the spindle migrate
position. These measures aim to enhance the developmental
potential of cloned embryos by minimizing cytoplasmic loss
to the greatest extent possible.

Precise spindle localization is crucial for accurate removal.
Recent studies have advanced beyond traditional invisible
aspiration techniques by incorporating fluorescent staining
to differentiate polar body and cell nucleus positions [9].
Although this method significantly enhances the success rate
of oocyte extraction, it only predicts the nucleus position in
54% of oocytes [10]. In contrast, another team [11] utilized
the polarization imaging system to visualize the spindle during
Meiosis II (MII), demonstrating innovative applications of
this technology. This pioneering technology has successfully
been employed in various fields such as cell sorting [12],
intra-cytoplasmic sperm injection (ICSI) [13], and macaque
cloning [14]. Our research represents the first application of
this technology in the robotics SCNT field, utilizing spindle
position information obtained from the polarization imaging
system to determine the optimal spindle removal position.

Accurately locating and tracking the spindle in oocytes
poses significant technical challenges due to the cell’s
microscopic scale, highly dynamic structural changes, and
visibility issues under brightfield microscopy [15], [16].
As shown in Fig. 1(a), the spindle is difficult to image

Fig. 2. The micropipette approaching the spindle will cause the spindle to
move. The green arrow points to the micropipette moving to the “optimal
spindle removal position”, and the dashed box shows the factors affecting the
displacement distance and direction.

directly using brightfield microscopy, making it difficult for
traditional methods such as invisible aspiration to visualize
spindle and manage complex positional dynamics. Studies
has shown that the precise localization of the spindle holds
critical importance not only for the success of techniques
like somatic cell nuclear transfer [17] but also for advancing
biomedical research and applications in areas such as cloning,
gene editing, and reproductive therapies [18]. Therefore, this
paper addresses these challenges by proposing Multi-Features
Adaptive Kernel Correlation Filters (MFAKCF), aiming to
provide a robust solution to enhance spindle localization
and tracking accuracy in oocytes, thereby assisting the
micropipette to approach the spindle and achieve enucleation
based on the optimal spindle removal position.

In MII oocytes, the viscoelasticity of the cytoplasm and
the concurrent breakdown of the nuclear membrane add com-
plexity to the movement of micropipettes [19]. As shown in
Fig. 2, when a micropipette with an asymmetric tip approaches
the spindle, the applied forces cause spindle displacement,
which is influenced by various experimental parameters,
such as oocyte diameter Rc, zona pellucida length Rzp,
micropipette width din j , Young’s modulus of the oocyte Ec and
Young’s modulus of the zona pellucida Ezp. To elucidate the
intricate dynamics between micropipette parameters, oocyte
morphology, and motion conditions affecting the end-point
positioning of genetic material, modeling approaches are
crucial. Previous studies [20], [21] successfully simulated
millimeter-scale soft tissue deformation after compression
using Mass-Spring-Damper (MSD) systems, achieving signif-
icant results. However, oocytes typically range in size from
120 µm to 150 µm with more complex mechanical properties.

Addressing this, we propose an advanced Nonlinear Mass-
Spring-Damper (NMSD) model by expanding the spring
constant into a piecewise expression: employing a cubic
polynomial for low displacements and a linear function for
high displacements. Furthermore, enhancing the damper’s
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characteristics enhances the model’s ability to capture vis-
coelastic behavior, integrating the effects of strain rate beyond
traditional linear methods. Building on precise modeling,
we simulate micropipette approach to the spindle in a virtual
environment, obtaining coordinates of the displaced spindle
position (optimal removal position), and subsequently validate
through experimental control of micropipette approach to these
coordinates, successfully achieving prediction-based optimal
spindle removal position experiments.

Compared with the existing works, the contributions of this
paper are summarized as follows: (1) Development of the
Multi-Feature Adaptive Kernel Correlation Filter (MFAKCF)
algorithm, achieving 92.84% spindle tracking accuracy and a
100% success rate under challenging imaging conditions. (2) A
improved Nonlinear Mass-Spring-Damper (NMSD) model that
accurately predicted spindle displacement, with an average
error of 0.4 µm. (3) A prediction-based optimal spindle
removal method, reducing cytoplasmic loss to 4.5% compared
to 6.9% with traditional methods. Experimental validation
using 60 porcine oocytes, demonstrating the reproducibility
and effectiveness of the proposed method in improving SCNT
outcomes.

The remainder of this paper is structured as follows:
Section II presents essential technologies and methodologies
for achieving the optimal removal position of the spindle
with micropipettes. This includes techniques such as spindle
localization under polarized light, the development of tracking
algorithms tailored to these conditions, and the predictive
approach using the NMSD model. Section III details the
experimental protocols, covering both spindle tracking results
and spindle displacement predictions. In Section IV, the impli-
cations of these research findings for somatic cell nuclear
transfer are explored, alongside suggestions for future research
directions. Finally, Section V provides the concluding remarks
for this study.

II. KEY METHOD AND TECHNOLOGY

A. The Location of Spindle Recognition and Tracking in
Polarized Image

As shown in Fig. 1(b), the spindle structure within the
oocyte appears small and exhibits blurred imaging bound-
aries under polarized light microscopy. Our experiments
reveal dynamic changes in spindle position and shape during
micropipette approach for precise enucleation. Furthermore,
the brightness of microscope illumination significantly influ-
ences spindle visibility. Additionally, unexpected lipid droplet
occurrences in oocytes under polarized light necessitate a
robust and precise tracking system [17]. Therefore, we opted
for the Multi-Features Adaptive Fusion Kernel Correlation
Filters (MAFKCF) for spindle detection and tracking.

Algorithm 1 outlines the recognition and tracking pro-
cesses. Expanding on previous work [18], the efficacy of the
KCF algorithm in accurately localizing and tracking genetic
material (nuclei) in fluorescently stained oocytes has been
demonstrated. KCF’s circulant matrix and dense sampling
techniques expedite tracking algorithms and improve fea-
ture capture, ensuring compatibility with real-time biological

Algorithm 1 Enhanced Adaptive Kernel Correlation Filter
Input: Initial frame image I0, target bounding box B0.
Output: Sequence of target positions {B1, B2, . . . , Bt }.

1: ϕ(I0, B0) = ω0
hog ∗ ϕ0

hog + ω0
gray ∗ ϕ0

gray→Initial target
feature I0;

2: ϕ̂(I0, B0)→Fourier transform of target feature;
3: H0→ Kernelized correlation filter initialized with

ϕ̂(I0, B0);
4: for each i ∈ [1, t] do
5: ϕ(Ii , Bi ) = ωi

hog ∗ϕi
hog +ωi

gray ∗ϕi
gray→ Extract features

from frame Ii ;
6: G i→Hi−1 • ϕ̂(Ii , Bi )→Compute response map;
7: Bi→Update target position based on G i ;
8: ϕ̂(Ii , Bi )→Extract features from updated Bi ;
9: Hi→Update filter with ϕ̂(Ii , Bi );

10: end for
11: return B = {B1, B2, . . . , Bt }.

experiments [19]. In this research, we adapted the method
for use with polarized images. Initially, we integrated multi-
feature adaptive fusion capabilities that combine grayscale
histogram and HOG features to segment the spindle area
and fortify the algorithm against microscope light variations.
Secondly, a template adaptive update mechanism was intro-
duced to mitigate the influence of lipid droplets during
experimental procedures. The combined enhancements result
in a comprehensive tracking system capable of dynamically
and accurately following the oocyte spindle under polarized
light conditions.

B. Oocyte Modeling Based on NMSD Model

Obtaining an accurate model to simulate the mechani-
cal properties of the oocyte is a prerequisite for obtaining
the spindle position migration coordinates. In this section,
we firstly model the oocyte mechanical properties with the
NMSD model, and then use the force-displacement curves to
calibrate the model parameters, and finally obtain a model of
the oocyte mechanical properties that takes into account both
the accuracy and the fast response characteristics.

1) NMSD Mechanical Model: A large number of studies
have been conducted to elucidate the complexity of the
mechanical properties of living oocytes, which are mainly
characterized by incompressibility, isotropy, and time-velocity
dependence [20], [21]. Among various simulation methods
available (such as finite element [22], material point [23],
and MSD [24]), we enhanced the NMSD model due to its
modular flexibility in handling mechanical interactions at the
pipette/cell interface across different cell geometries.

In our simulation environment, the oocyte focal plane is
modeled as shown in the Fig.3, with each mass connected
to the surrounding masses in a Voigt form, i.e., springs
and dampers connected in parallel. This innovative approach
effectively models stress relaxation and reversible deformation
in live oocytes [25], offering a new framework for describing
viscoelastic behavior in active cells. According to Newton’s
second law of motion and Hooke’s law, the force equation of
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Fig. 3. Schematic diagram of the MSD model. The Voigt connection is
shown schematically in the dashed box.

Fig. 4. The typical force-displacement behavior of living oocytes for different
squeezing velocities v1>v2>v3.

the proposed model is:

Mi r̈ i + Fk
i + Fd

i = Fext
i (1)

in which Mi and ri are the mass and position vector at node i ;
Fk

i , Fd
i and Fext

i denote the spring force, damping force and
externally applied force on node i , respectively.

To capture the highly nonlinear elastic behavior of live
oocytes (as shown in Fig. 4.), we extended the representation
of the spring in the NMSD model. According to Hooke’s law,
the force expression for spring deformation Fk

i is:

Fk
i =

N∑
j=1

Ki j
ri − r j∥∥ri − r j

∥∥ (2)

among them, Ki j is the calculation formula of spring constant,
ri −r j

∥ri −r j∥
is the length change of spring between node i and

node j .
This extension employs a two-step approach to represent the

force-displacement characteristic: a third-degree polynomial at
low displacements and a transition to linear behavior at high
displacements.

Ki j = k11li j + k21l3
i j ,

∣∣1li j
∣∣ ≤ |1lc|

or
[
A + B

(∣∣1li j
∣∣ − |1lc|

)]
sgn

(
1li j

)
,
∣∣1li j

∣∣ > |1lc|

(3)

Algorithm 2 Nonlinear Mass Spring Damper Model
1: Initialization: ri , ṙ i , mi , Fk

i , Fd
i , for i = 0, . . . , N -l;

2: loop
3: do
4: Obtain the external forces Fext

i or position-based
attachment from the instrument;

5: Compute the spring forces Fk
i from (2)(3)(4)(5);

6: Compute the damper forces Fd
i from (6);

7: Estimate the resultant forces from (1);
8: Compute the positions and velocities;
9: Update the positions ri (t + 1t) → ri and velocities

ṙ i (t + 1t) → ṙ i .
10: end
11: end loop

Defining the model parameters for the enhanced spring
behavior:

· k1: Nonlinear spring stiffness.
· k2: Linear spring stiffness.
· 1li j : Length changes of the spring connecting nodes i

and j .
· lc: Critical displacement, below which springs exhibit

nonlinear behavior.
· Parameters A and B: Constants, defined as follows:

A = K11lc + K21l3
c (4)

B = K1 + 3K21l2
c (5)

To better simulate the viscoelastic behavior of living oocytes,
we extended Eq. (1) to incorporate nodal damping forces.
This extension introduced a displacement-velocity component
alongside the conventional velocity component, reflecting the
combined influence of strain and strain rate on the model’s
damping characteristics.

Fd
i = d0ṙ i + d1

∥∥ri − r0
i

∥∥ṙ i (6)

where d0 and d1 are two damping constants and r0
i represents

the rest position of node i . Thus, the spring stiffness is a
cubic polynomial at low displacements and linear at high
displacements, and this direct velocity damping force on the
point mass mimics viscoelasticity. Algorithm 2 summarizes
the order of operations of the model.

This improved damping force expression can more accurate
describe the viscoelastic response of living oocytes when
subjected to external forces. Specifically, it takes into account
the nonlinear behavior at low displacement and the linear
behavior at high displacement, as well as the effects of strain
rate on the damping characteristics. By adjusting the values
of d0 and d1, we can better match the experimental data and
thus improve the prediction accuracy of the model.

2) Identification of NMSD Model Parameters: The chal-
lenge posed by the NMSD model lies in accurately determin-
ing parameters that replicate the mechanical behavior of living
oocytes. Key parameters such as k1, k2, d0, and d1, which
are crucial for understanding oocyte mechanical properties,
require precise definition. Our experimental findings illustrate
the oocyte’s force-displacement curve, revealing nonlinear
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Fig. 5. Penetration experiments in real and NMSD simulated environments. The penetration depths are 0, 15, 30, and 45 µm.

characteristics at low displacements and a nearly linear rela-
tionship at higher displacements, as depicted in the Fig. 4.
To ensure simulation fidelity with real-world observations,
we refine NMSD model parameters by adjusting simulated
force-displacement curves based on experimental data.

Using the formula proposed by [26], we computed a real-
istic force-displacement curve that accurately reflects oocyte
penetration dynamics. This calculation involves determining
force through an improved point load model and correlating
displacement with micropipette penetration depth.

Fig. 5 compared penetration experiments conducted in
real and simulated environments, where the simulated oocyte
consists of 231 particles forming a circular structure. Each
node interacts with its 8 neighboring nodes through spring
and damper forces. The NMSD model demonstrates varied
force-displacement behaviors with increasing X-axis dis-
placement rates. Specifically, force nonlinearly changes with
displacement at a consistent rate, exhibiting a nonlinear phase
followed by linear behavior similar to indentation results seen
in live cell studies. Notably, displacement rates significantly
influence the mechanical responses of the model, indicating
stiffer responses at higher rates, consistent with findings in
biological tissue investigations [27].

Among model parameters, spring stiffness constants (e.g.,
k1, k2) prominently dictate force-deformation characteristics in
respective nonlinear and linear regions. Conversely, damping
parameters (e.g., d0, and d1) minimally influence curves at
small and large deformations, respectively.

To bridge the gap between simulation and experimental
results, we propose a refined optimization method aimed at
adapting our model to a specific dataset. The objective function
F(x) is formulated as the sum of squared differences between
experimental data points and simulated responses. The formula

for the objective function F(x) is:

F(x) = ( fx1 − fe1)
2
+ ( fx2 − fe2)

2
+ . . . . . . + ( fxn − fen)

2

(7)

in which fx1, fx2 to fxn are the external force values at
different times obtained by NMSD model, and fe1, fe2 to
fen are the actual forces obtained from the experiment at the
corresponding time of the simulation data.

The F(x) algorithm for constrained nonlinear minimization
is designed to iteratively adjust model parameters to find an
optimal configuration that aligns with experimental observa-
tions. A key component of this algorithm is its ability to handle
constraints, which are integral to ensuring that the parameter
adjustments do not violate specific conditions required by
the problem. The algorithm adjusts the parameters in each
iteration while continuously checking compliance with the
constraints, effectively balancing the need to minimize the
objective function with the need to satisfy the constraints.
This iterative adjustment process continues until the algorithm
converges to an optimal parameter setup that not only min-
imizes the objective function but also satisfies all imposed
constraints, thereby aligning closely with the experimental
behavior observed. Through this rigorous iterative process, the
F(x) algorithm ensures that the final parameter configuration
is both optimal and feasible, adhering to the constraints
defined by Eq.(8) and reflecting the underlying physical or
experimental requirements.

min F(x) = f (k1, k2, d0, d1)

s.t. d0 ≥ 0
d1 ≥ 0
k2 ≥ 50k1 (8)
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Fig. 6. Comparison of force-displacement curves obtained by different
modeling methods with real experimental data.

3) Additional Parameter Necessity Verification: To better
demonstrate the importance of the additional parameters
(nonlinear spring constant k1 and viscoelastic damping coef-
ficient d1), this study uses three different MSD systems to
simulate the compression experiment on oocytes. These sys-
tems include: the original version of the MSD system [28],
the MSD system with only the direct velocity damper d0,
and the NMSD system proposed in this study. By comparing
the experimental data with the force-displacement curves gen-
erated by the three different modeling systems, where each
curve represents the relationship between the force applied
to the oocyte and the displacement during compression, the
X-axis represents displacement in micrometers (µm), and
the Y-axis represents force in micro-newtons (µN), several
findings can be observed: In the original MSD system (which
includes a linear spring and a direct velocity damper), the
force-displacement curve shows negligible nonlinear behavior
during the initial stage of micropipette compression (the blue
curve in Fig. 6). Moreover, while adding only the direct
velocity damper d0 can partially capture the nonlinear trend in
the experimental force-displacement curve (the green curve in
Fig. 6), the inclusion of the viscoelastic damping coefficient d1
significantly improved the simulation accuracy (the red curve
in Fig. 6).

Fig. 7 illustrates how varying d1 values yield discernible
alterations in the force-displacement patterns of oocyte cell
deformation under stress. These findings emphasize the pivotal
role of k1 and d1 in the enhanced NMSD model, accurately
depicting the intricate biomechanical traits of oocyte responses
to external forces.

C. Optimal Spindle Removal Position Prediction

After obtaining an accurate NMSD model, the next step is to
conduct a micropipette approaching spindle experiment in the
simulation environment. The experimental process is shown
in Fig. 8, and the experimental parameters are shown in the
following Table I.

When the micropipette penetrated the oocyte at the
3 o’clock position of the oocyte, the online NMSD model

Fig. 7. Different d1 values cause obvious changes in the force-displacement
pattern of oocyte deformation under pressure.

TABLE I
EXPERIMENTAL PARAMETERS

parameter calibration is performed, where d0 = 20.182Ns/m,
d1 = 10000Nm/s2, k1 = 2.5N , k2 = 95.9738N . As shown
in the Fig. 9, the oocyte puncture point is taken as the origin.
After the oocyte is punctured, the micropipette approached
the spindle. When the micropipette moved to the initial
position (X ini , Yini ) = (15.8718, 18.1392) of the spindle, due
to the liquid properties of the cytoplasm and the squeez-
ing force of the micropipette, the spindle moved to the
offset coordinate (Xof f , Yof f ) = (25.6972, 49.127). At this
time, the obtained spindle offset coordinate (Xof f , Yof f ) is
the optimal oocyte spindle removal point (Xoptimal , Yoptimal),
so controlling micropipette to moved from the origin to
(Xoptimal , Yoptimal) is to reached the optimal spindle removal
position.

D. Micropipette Approaching the Optimal Spindle Removal
Position Process

The process of approaching the optimal spindle removal
position with a micropipette is illustrated in Fig. 9. Initially,
oocyte fixation and micropipette preparation are conducted
during the setup phase of the experiment. Once the experiment
began, the micropipette applied vertical pressure to the oocyte
from the 3 o’clock direction, while simultaneously recording
the force-displacement curve. Following this, initial values
for variables in the NMSD system are set based on the
acquired experimental force-displacement data. In the simu-
lation phase, with consistent insertion speed and micropipette
displacement conditions, forces on springs and dampers across
the NMSD system’s edges are calculated. The NMSD model
parameters are then adjusted to match the force-displacement
curve obtained from experiments. Calibration concluded when
the similarity between experimental and simulated force-
displacement curves exceeds 0.999 at each data point.
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Fig. 8. Simulation process of the micropipette approaching the predicted position of the spindle.

Fig. 9. Micro-manipulation system.

Post-calibration, the micropipette is maneuvered within the
NMSD model to determine the spindle position after displace-
ment. Subsequently, the experiment guided the micropipette
towards these displaced spindle coordinates, thereby complet-
ing the approach to the optimal spindle removal position.

The position of the micropipette relative to the oocyte
spindle is adjusted based on spindle position feedback, with
control adjustments made relative to the control amount of the
previous moment. The position tracking error e is defined as:

e = xd − x (9)

where xd is the desired micropipette movement trajectory (the
line connecting the micropipette mouth and the optimal spindle
removal point), and x is the actual position of the micropipette.
The PID control is expressed as follows:

u(t) = u(t − T ) + K p[e(t) − e(t − T )] + Ki e(t)

+ Kd [e(t) − 2e(t − T ) + e(t − 2T )] (10)

where T is the sampling time interval, and u(t−T ) denotes the
control variable in the previous time step. K p, Ki , and Kd are
the positive gains to be designed.

III. EXPERIMENT RESULTS

A. System Setup

The proposed micro-manipulation system is integrated
based on a motorized inverted microscope (TiE, Nikon)

Fig. 10. Flowchart of micropipette approaching predicted spindle position
and block diagram of micropipette control method.

with a 20× objective lens for micro-manipulation. A polar-
ization system (MEY10031 TI2-C-SO, Nikon) is placed
for oocyte spindle imaging. A motorized X-Y-Z micro-
manipulator (MP285, Sutter) with a motion range of 25 mm
and a positioning resolution of 0.04 µm, connects with the
micropipette holder and drives the micropipette to move.
A motorized X-Y stage (ProScan III, Prior) with a motion
range of 120 mm ×80 mm and a positioning resolution
of 0.05 µm, carries the glass dish (LQ-1177-60) with the
porcine oocytes and moves the oocytes into the field of view
(FOV) of the microscope in the experiment. The controllers
of the motorized micromanipulator and motorized stage are
connected to the computer via a serial interface. The software
of the proposed micro-manipulation system calls the functions
in the software development toolkit to control the motorized
devices. An micropipette is attached to a digital microinjector
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Fig. 11. Spindle tracking algorithm precision-threshold curve.

(XenoWorks BRE, Sutter). A CMOS camera (Iris-9, Teledyne
Photometrics) is mounted on the microscope for visual feed-
back. Fig. 9. shows the prototype of the micro-manipulation
system.

The holding micropipette(HM) was made from a borosil-
icate glass tube with an outer diameter of 1 mm and
inner diameter of 0.6 mm. The glass tube was drawn by a
micropipette puller (P-97, Sutter Instrument) and was then
forged into a microtube with a diameter of 50-80 µm by a
forging needle instrument (MF-900, Narishige). Finally, the
opening was melted by a professional with an alcohol lamp
to make the needle smooth. The micropipette was purchased
from CooperSurgical (TPC, LBC-OD20BA90, Australia). The
tip had an outer diameter of 20 µm and tip angle of 45◦.

B. Spindle Recognition and Tracking Results

In our recognition and tracking experiment, we employed
the MFAKCF algorithm to achieve real-time detection and
monitoring of spindle movement. The tracking process
involved using a micropipette to puncture oocytes and maneu-
ver them towards the spindle’s position, resulting in an average
displacement of 35 µm. Key evaluation metrics for algorithm
performance included accuracy and success rate. We computed
the percentage of frames where the pixel distance between
estimated and ground truth object positions was below a pre-
defined threshold, generating precision values corresponding
to different thresholds and plotting precision-recall curves.

A comparative analysis of the proposed tracking algorithm,
represented by the black line in Fig. 11, shows significant
improvements over our previous tracking algorithm, depicted
as the blue line. The integration of multiple features has
notably enhanced the robustness of the algorithm, especially
in the presence of interference, as illustrated by the red line
in Fig. 11. The adaptive template updating function further
proves effective under challenging conditions, such as fluctu-
ating microscope light intensity, changing shapes of genetic
material, and interference from lipid vesicles.

Fig. 12. The qualitative tracking results. (a) Initial position of the spindle.
(b) Spindle displacement due to local transparency changes in the oocyte
during the insertion of the injection micropipette, leading to loss of spindle
position. (c) Spindle reappearance (red box) after the oocyte is punctured,
with accompanying fat vesicles (green box) causing interference and affecting
tracking accuracy. (d) Successful spindle identification and tracking until its
removal from the oocyte.

The experimental results highlight that the MFAKCF
algorithm demonstrated superior tracking performance when
assessed using the precision-threshold curve at various thresh-
old settings. Specifically, the algorithm achieved an average
tracking accuracy of 92.84% and a 100% success rate, marking
improvements of 45.63% and 49.89% over the original KCF
algorithm, respectively, as shown in Fig. 11. These advance-
ments are primarily attributed to the incorporation of two
key modules: the adaptive fusion module and the adaptive
update module. The adaptive fusion module enables dynamic
adjustment to scene-specific features, effectively leveraging
multi-feature information. Meanwhile, the adaptive update
module enhances the model’s ability to learn and adapt over
time, reducing the risk of model drift and further improving
overall tracking performance. Qualitative tracking results are
presented in Fig. 12.

C. Experimental Results of Predict Optimal Removal Spindle
Position

This section focuses on the experiment to predict the
optimal spindle removal point and the accuracy of the pre-
diction. We predict the optimal removal positions for spindle
bodies in 20 sets of oocytes. The prediction process is illus-
trated in Fig. 13. Initially, oocytes are fixed and micropipette
prepared before the experiment commences. During the exper-
iment, micropipette exert vertical pressure on the oocytes,
concurrently recording force-displacement experimental data
[ fe1, fe2, fe3, . . . fen], as shown in Table II. Subsequently,
initial values are assigned to variables in the NMSD system
based on the force-displacement data obtained. Following this,
using the same micropipette speed(30µm/s) and displacement
(65µm) conditions in a simulated environment, the resultant
forces on each spring and damper in the NMSD system are
computed. Thereafter, adjusting the parameters of the NMSD
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Fig. 13. Experimental process of micropipette approaching the optimal
spindle removal position.

TABLE II
THE FORCE-DISPLACEMENT DATA OBTAINED FROM

THE EXPERIMENT AND SIMULATION

model based on the force-displacement curves obtained from
the simulation [ fx1, fx2, fx3, . . . fxn], simulating data along-
side experimental results, and refining model parameters,
whered0 = 20.182Ns/m, d1 = 10000Nm/s2, k1 = 2.5N ,
k2 = 95.9738N . Once calibration of the model parameters is
complete, experiments in the simulated environment proceed
to simulate the micropipette approaching the spindle bodies,
capturing the coordinates of spindle force deviation within the
oocytes, representing the optimal spindle removal point.

D. Experimental Results of Micropipette Approaching the
Optimal Removal Spindle Position

To validate the effectiveness of our proposed method for
optimal spindle removal using micropipette manipulation, this
section compares it with invisible aspiration and a previously
developed method [8], focusing on the distance between the
micropipette tip and the spindle position. We also examine
the success rate of genetic material removal and the volume
of cytoplasm removed by reducing the internal pressure of the
micropipette.

Firstly, oocytes were randomly divided into three groups,
20 in each group. They underwent procedures using our
proposed predictive positioning method for optimal spindle
approach (see Fig. 13), a previous automated invisible aspira-
tion method for approaching the nucleus [8], and a traditional
invisible aspiration method. First, the polarizer was rotated to
make the spindle in the oocyte visible, and the spindle of the
oocyte was rotated to the 2 o’clock position in the focal plane.
Subsequently, the micropipette was guided along the X-axis
from the 3 o’clock direction to compress and penetrate the
oocyte. During this process, variations in local transparency
of the oocyte may cause interference from lipid droplets,
which were further identified using the MFAKCF algorithm to
accurately track the spindle. After determining the actual spin-
dle position, the NMSD model predicted the optimal spindle
removal position. Finally, the micropipette was controlled to
move towards the predicted optimal spindle removal position.
In the case of the other two methods, the spindle of the oocyte
was rotated to the 2 o’clock position, and an experienced
operator guided the micropipette along a trajectory to approach
the nucleus. The final experimental results show that the
average accuracy of the offset coordinates predicted by the
NMSD model in this paper and the coordinates obtained by
using a micropipette to precisely approach the spindle reached
97.26%, with an average error of only 0.4µm.

These three methods aim to minimize the distance between
the micropipette tip and the genetic material (spindle or
nucleus) while ensuring complete removal of the genetic
material and minimizing cytoplasmic loss. To evaluate the
superiority of our proposed method, we performed statistical
analysis on the average distance between the micropipette
tip and the spindle after applying each method. The results
demonstrate that our approach, by optimizing oocyte orienta-
tion and designing ideal removal points, reduced the average
distance between the micropipette tip and the spindle by 68%.
Furthermore, to assess the effectiveness of our method in
reducing unnecessary cytoplasmic loss, we used cytoplasmic
loss as a metric, defined as the ratio of the volume of removed
spindle and surrounding cytoplasm to the total cytoplasmic
volume. The total cytoplasmic volume was approximated by
treating the oocyte (excluding the zona pellucida) as a sphere,
while the removed cytoplasmic volume was approximated as
a cylinder with a diameter equal to the inner diameter of the
micropipette (20 µm). Using previous methods, the removed
cytoplasmic volume (shown in the green box in Fig. 14(a))
was 6.9% of the total oocyte volume by reducing the internal
pressure of the micropipette. In contrast, our proposed method,
illustrated in the red box in Fig. 14(b), reduced the cytoplasmic
removal to 4.5%, a 34.78% decrease from the previous method
and significantly lower than the 30% achieved with invisible
aspiration. The comparative results of the three methods are
shown in Fig. 14(c), indicating that our method achieves the
smallest average cytoplasmic removal. Lastly, as depicted in
Fig. 14(d), our method enabled the visualization of spindle
with a 100% success rate in spindle removal, surpassing the
previous success rate of 92.3% and the traditional invisible
aspiration success rate of 77.1%.
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Fig. 14. Experimental Results. (a). The volume of cytoplasm removed
by previous methods. (b). The volume of cytoplasm removed by proposed
method. (c). Comparison of average removal volumes of the proposed method,
previous methods and invisible aspiration. (d). The obtained enucleation
success rate for proposed method, previous method and bind aspiration.

IV. DISCUSSION

This study proposes a novel method involving predictive
positioning to determine the optimal spindle removal location
for robotic SCNT applications. The method addresses the
inherent challenges of visualizing genetic material encountered
in traditional invisible aspiration techniques. By integrating a
polarization imaging module, our study successfully enhanced
the visibility of spindles in oocytes. However, the current
polarization imaging system is limited to observing meiotic
spindles and cannot visualize differentiated nuclei or polar
bodies. Therefore, culturing reconstructed embryos and cal-
culating the blastocyst rate are essential steps for evaluating
the feasibility of reconstructed embryos using the spindle
removal technique described in this study, thereby confirming
its applicability for robotic nuclear transfer applications.

From the perspective of time efficiency, the proposed
method demonstrated a significant reduction in spindle visu-
alization time. For structurally intact in vitro-matured oocytes
cultured for 36 hours, the spindle visualization process aver-
aged 20±5 seconds, compared to the over 30 minutes typically
required for staining and imaging preparation in traditional
fluorescence-based methods. This substantial reduction in
time, coupled with the elimination of potential phototoxicity,
highlights the efficiency and practicality of the proposed
system, particularly for live-cell applications requiring rapid
and non-invasive spindle visualization.

In this study, the Nonlinear Mass-Spring-Damper (NMSD)
model integrates nonlinear springs and direct velocity
dampers, enhancing its accuracy in simulating the mechanical
properties of oocytes compared to finite element models.
The adjustable parameters of the NMSD model facilitate
calibration, making it highly suitable for real-time biological
experiments. The accurate prediction of spindle displacement
enables reliable estimation of spindle offset and confirms the
effectiveness of the proposed NMSD-based micromanipulator
approach for approaching spindles in oocytes. This method
demonstrates improved nuclear removal success rates and

reduced cytoplasmic volume loss, validating its efficacy for
precise spindle manipulation.

Although this study focuses primarily on porcine oocytes,
the proposed method exhibits potential for broader appli-
cability to other cell types. The mechanical parameters of
the NMSD model, including spring constants and damping
coefficients, can be recalibrated for other cell types, such as
murine or bovine oocytes, by performing fixed-cell puncture
experiments to derive force-displacement curves. Future work
will aim to extend the method to additional cell types, further
validating its generalizability and addressing challenges such
as differences in spindle morphology, cell size, and mechanical
stiffness.

V. CONCLUSION

In the context of SCNT, precise removal of the cell nucleus
presents a critical technological challenge. This study suc-
cessfully achieved precise tracking of the oocyte genetic
material (spindle) using a polarized light imaging system and
a MFAKCF visual tracking algorithm, achieving a tracking
success rate of 100%. Additionally, an improved NMSD model
effectively simulated the mechanical properties of live cells
and predicted spindle position shifts under various experimen-
tal conditions through simulation. Ultimately, this research
proposes an optimal approach for approaching the nucleus
with a micromanipulator based on predictive positioning.
Experimental validation demonstrated a prediction accuracy
of 97.26% and an average positional error of only 0.4 µm.
Using this approach, cytoplasm loss can be reduced to 4.5%
and achieve a 100% enucleation success rate. This method
provides reliable technical support for reducing cytoplasmic
loss and optimizing SCNT procedures.
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