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Gray-Level Guided Image-Activated Droplet Sorter for
Label-Free, High-Accuracy Screening of Single-Cell on
Demand

Zhen Liu, Yidi Zhang, Jianing Li, Shuxun Chen, Han Zhao, Xin Zhao, and Dong Sun*

Single-cell encapsulation in droplet microfluidics has become a powerful tool
in precision medicine, single-cell analysis, and immunotherapy. However,
droplet generation with a single-cell encapsulation is a random process,
which also results in a large number of empty and multi-cell droplets. Current
microfluidics sorting technologies suffer from drawbacks such as fluorescent
labeling, inability to remove multi-cell droplets, or low throughput. This paper
presents a gray-level guided image-activated droplet sorter (GL-IADS), which
enables label-free, high-accuracy screening of single-cell droplets by rejecting
empty and multi-cell droplets. The gray-level based recognition method can
accurately classify droplet images (empty, single-cell, and multi-cell droplets),
especially in differentiating empty and cell-laden droplets (accuracy of 100%).
Crucially, this method reduces the image processing time to ≈300 μs, which
makes the GL-IADS possible to reach an ultra-high sorting throughput up to
hundreds or even KHz. The GL-IADS integrates the novel recognition method
with a detachable acoustofluidic system, achieving sorting purity of 97.9%,
97.4%, and >99% for single-cell, multi-cell, and cell-laden droplets,
respectively, with a throughput of 43 Hz. The GL-IADS holds promise for
numerous biological applications that are previously difficult with
fluorescence-based technologies.
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1. Introduction

Deciphering population heterogeneity is
of great interest in cellular biology.[1–3]

Conventional biological studies for cell
analysis often rely on cell populations,
which can ensure the average properties
of detection substance but fail to capture
the heterogeneity between populations.[4,5]

Recent efforts have increasingly rec-
ognized the significance of single-cell
studies in biomedical fields.[6,7] The ex-
isting technologies for single-cell analysis
include flow cytometry,[8] fluorescence-
activated cell sorting (FACS),[9] image-
activated cell sorter (IACS),[10] manual
micromanipulation,[9] micropore array,[11]

and droplet microfluidics[12]. Flow cytom-
etry is regarded as the gold standard in
biological laboratories. Nevertheless, the
high instrument price and the cell damage
risk due to high voltage make it not so ideal
for single-cell analysis.[13] FACS is an indis-
pensable tool owing to its high-throughput,
but it also decreases cell activity due to the
stress exerted on the cells.[14] IACS can
identify multiple cell types in a label-free
manner based on machine learning.[15]

Yet, the long image processing time and high requirements
for advanced imaging hardware is a big challenge in achieving
high sorting throughput.[16] Manual micromanipulation allows
for gentle handling of cells, but it is generally inefficient.[17] Mi-
cropore array can achieve single-cell capture andmaintain the cell
viability. This technology, combined with some recognition tech-
nologies such as laser-induced forward transfer,[18,19] can achieve
high-accuracy single-cell sorting. However, the micropore size
must be precisely matched to the target cell size, and its through-
put of 1000 h is still much lower than that of FACS. The droplet
microfluidics platform has become an powerful tool for high-
throughput single-cell analysis,[20,21] drug screening,[22,23] and di-
agnosis of diseases.[24,25] The isolated droplet provides an inde-
pendent microenvironment to study the protein secretion, en-
zyme activity, and proliferation of individual cells. It also reduces
cross-contamination and maintains cell activity at the single-
cell level. Compartmentalization of single-cell into each individ-
ual water-in-oil microdroplets has revolutionized genomics, tran-
scriptomics, and proteomics research.[4,26]
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Despite the great advantages of droplet microfluidics for
single-cell studies, cell quantity encapsulated in droplets is dom-
inated by Poisson distribution.[27] To minimize the proportion
of multi-cell droplets, a low-concentration of cell suspensions
for droplet encapsulation is required, but it also results in a
low encapsulation rate of single cells (<5%) and a majority of
empty droplets.[28] The large number of empty droplets make
the downstream process difficult and time-consuming. There-
fore, a microfluidics platform that can sort single-cell droplets
is required. To date, the most commonly used technology for
single-cell droplet sorting is fluorescence-activated droplet sorter
(FADS).[29–31] This technologymakes sorting decision depending
on photo counts from the encapsulated cells labeled by fluores-
cence biomarkers.[14] However, although FADS can achieve re-
liable droplet separation, it has several critical drawbacks. First,
labelling these biomarkers can possibly alter the properties of the
original cells or damage cells, causing the sorted cells to not show
the same characteristics as the original cells and thus cannot
be used for subsequent biological analysis.[16,32,33] In particular,
many cell types cannot be high-specificity fluorescently labeled,
or they even have no biomarkers.[34,35] Second, FADS cannot dis-
tinguish the quantity of cells encapsulated in a droplet, which
results in it being unable to remove multi-cells droplets.[36] To
achieve high-purity screening of single-cell droplets, FADS has
to adopt low-concentration cell encapsulation to avoid the pres-
ence of multi-cell droplets.[23,37] However, the rising number of
empty droplets and the low proportion of single-cell droplets acts
to lower sorting throughput, showing a trade-off relationship be-
tween the purity and throughput in single-cell droplet sorting.
These shortcomings limit the application of FADS in single-cell
studies.
Imaging-based approaches are becoming increasingly pop-

ular in droplet sorting studies, especially with the develop-
ment of image processing algorithms, interface speeds and
processing hardware in recent years.[38,39] High-resolution im-
ages enable real-time visual recognition of droplets, which
can be coupled with droplet sorting without the use of la-
bel reagent. Indeed, machine learning strategies, such as tem-
plated matching,[40] convolutional neural networks (CNNs),[39]

“You Only Look Once” (YOLO),[41] and other deep learning-
based detection models,[2,28,42] have been implemented in cell-
laden droplet sorting. This technology can identify the cell
quantity encapsulated in droplet, which makes it possible to
achieve single-cell droplets sorting regardless of the probabil-
ity of multi-cell droplets. However, the applications of machine
learning techniques to high-throughput image-activated droplet
sorter (IADS) have proven to be a big challenge due to the
long image processing time and high requirements for imag-
ing and GPU hardware.[16,41] In IADS technologies, complet-
ing a target object sorting needs image acquisition, image pro-
cessing (object detection, classification and decision-making),
and actuation.[10,41]. Image acquisition can be completed in mi-
croseconds by using a high-speed camera.[43] Actuation meth-
ods, such as acoustofluidics[23,37] and dielectrophoresis[14], can
meet the droplet sorting throughput requirement up to several
kHz. However, image processing is the most time-consuming
part. It needs high computational power to evaluate millions
of learned parameters on the real-time image processor, re-
sulting in the image processing time of at least dozens of

milliseconds.[16,44] The long image processing time caused the
sorting throughput of even state-of-the-art IADS to be 100 times
lower than that of FADS,[12,39,41] which is difficult to meet
the requirements for conducting population-scale biological
experiments.
In this article, we present a gray-level guided image-activated

droplet sorter (GL-IADS), which enables label-free, high-accuracy
screening of single-cell droplets, multi-cell droplets, and both
(cell-laden droplets) on demand. The gray-level based recogni-
tion method can accurately classify droplets into empty, single-
cell, and multi-cell according to the cell quantity encapsulated in
the droplet. In particular, the accuracy of distinguishing empty
and cell-laden droplets reaches 100%. The recognition capabil-
ity enables the sorter to sort single-cell droplets by rejecting
empty and multi-cell droplets from a high-concentration cell
encapsulation, overcoming the aforementioned trade-off. More-
over, the recognitionmethods shorten the image processing time
(droplet detection, classification, and decision-making) to ≈300
μs, which makes the GL-IADS possible to reach an ultra-high
sorting throughput up to hundreds or even KHz. [41,42,44] Yet it
does not require high-performance computing computers. For
the acoustofluidic actuation system, the disposable polydimethyl-
siloxane (PDMS) channel can be reversibly coupled and detached
from the expensive surface acoustic wave (SAW) transducer to
avoid biological contamination. A designed micropillar reduced
acoustic energy attenuation to enable reliable droplet deflection.
Finally, the GL-IADS achieved sorting purity of 97.9%, 97.4%,
and >99% for single-cell, multi-cell, and cell-laden droplets, re-
spectively, at a throughput of 43 droplets s−1. The sorter also
ensured the monodispersity of the sorted droplets by rejecting
merged droplets and/or droplet debris. The high viability (>93%)
of recovered cells demonstrates the biocompatibility of the sorter.
The GL-IADS holds promise for numerous biological applica-
tions that are previously difficult with fluorescence-based sorting
technologies.

2. Results

2.1. Schematic of the GL-IADS

The GL-IADS consists of two components: a detachable
acoustofluidic system and an image detection module (Figure
1A). The detachable acoustofluidic system is specifically engi-
neered for droplets loading, focusing and deflection. The ar-
rangement of the device is shown in Figure 1B,C. The SAW
transducer is fabricated by depositing a pair of unidirectional
focus interdigital transducers (U-FIDTs) on a lithium niobate
(LiNbO3) substrate. The disposable PDMS channel features two
inlets, two outlets, and a sorting channel. The disposable PDMS
channel and SAW transducer are physically coupled via a mi-
cropillar, which acts as a waveguide to transmit the acoustic en-
ergy from the SAW transducer into the sorting channel. The im-
age detection module is designed for droplet imaging and recog-
nition. A CMOS camera is used to acquire the sorting chan-
nel in real time, and then the image processing system de-
tects, classifies, and makes a decision on the droplet by analyz-
ing each acquired image. The image processing system could
real-time classify droplets into empty, single-cell, and multi-cell
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Figure 1. Overview of the GL-IADS. A) Experiment setup of GL-IADS and droplet sorting process. B) Illustration of droplet deflection in the detachable
acoustofluidic system. C) Photograph of the detachable acoustofluidic system. D) Real-time droplet classification of empty, single-cell, and multi-cell.
E) Selectable screening of droplets with various cell numbers.

based on the gray-level recognition method (Figure 1D). Based
on this, the GL-IADS has three options for target droplet screen-
ing, including single-cell, multi-cell, and cell-laden droplets
(Figure 1E).
The single-cell droplet sorting procedure is also illustrated in

Figure 1A. Droplets and HEF-7500 oil were injected into the dis-
posable PDMS channel from themiddle and peripheral inlets, re-
spectively. Under the action of the oil phase, the injected droplets
were focused into a central straight streamline and maintained a
certain distance between neighbors, ensuring each droplet had
enough space for image detection and SAW deflection. In the
sorting channel, a region of interest (ROI) of the image was set.
All focused droplets would pass through the ROI one by one.
Each droplet within the ROI could be classified in real time.
When the single-cell droplet was detected, the image process-
ing system gave the U-FIDTs a turn-on command to form a
standing surface acoustic wave (SSAW) field. Under the action
of acoustic radiation force (ARF), the detected single-cell droplet
was drawn to the pressure node of SSAW and finally flowed
into the collection outlet. The other non-target droplets main-
tained their route to flow into the waste outlet due to a low flow
resistance.

2.2. Real-time Droplet Detection, Classification, and
Decision-making

Here, we use class “0”, class “1”, and class “>1” to represent
empty, single-cell, and multi-cell droplets, respectively. The
microscopic images of the sorting channel were acquired at
320 frames per second (fps) and processed frame by frame.
Figure 2A illustrates the process of droplet detection, classifica-
tion, and decision-making. For each acquired microscopic im-
age, the ROI was extracted and reconstructed to a new grayscale
image with 8-bit pixel depth. Then, a Hough circle transform al-
gorithm (Note S1, Supporting Information) was used to identify
whether a droplet was present in the form of a circle. The radial
detection parameter was set within the range from 13.5 to
14.5 pixels. It could identify the monodisperse droplets
with a diameter of 45 μm without omission, which was
also used to control the size uniformity of the sorted
droplets by rejecting droplet debris and/or merged large
droplets. Upon detecting a droplet, a square detection
area, made up of a 19 × 19-pixel array with a total of
361 pixels, centered on the center of this circle, was estab-
lished. Then, the image processing system began to scan and
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Figure 2. Principle of droplet detection, classification and decision-making. A) Image processing procedure. i) Each acquired live microscopic image has
a ROI in the sorting region. ii) ROI was extracted and reconstructed to a grayscale image with 8-bit pixel depth. iii) A Hough circle transform algorithm
was used to detect droplets in this ROI. iv) If a droplet was detected, a square area was created in circle (droplet), and then the image processing system
scanned and counted the gray value of each pixel in this square area. v) The image processing system classified droplets and made a decision based on
droplet classification parameter N. B) Droplet classification parameter. The total pixels number of square area is 361, of which the number (N) of pixels
with gray value exceeding 180 determines droplet classification. C) Single-cell droplet recognition accuracy when 140 ≤ N < 190. D) Multi-cell droplet
recognition accuracy when N < 140.

count the gray values (range of 0–255) of each pixel of this
square area. Inside a droplet, the cell has a deeper color than
water, and it appeared typically as a gray ball with a radius of
≈6 pixels. Therefore, the more cells in the square area, the
fewer the pixels with high gray value. For each detected droplet
image, a corresponding text file containing the gray value of
361 pixels (Figure S1, Supporting Information) was outputted.
We analyzed 300 droplet images for class “0”, “1”, and “>1”
(number of “2” was 260, “>2” was 40), respectively. The number
(N) of pixels with gray value exceeding 180 in the square area
has an obvious difference in the three droplet classifications,
detail as the parameter graph in Figure 2B. The N of the class
“0” population was all in the range of 200–250. The N of 95%
class “1” population were in the range of 140–190, where 8%
of the class “2” population were present. The N of 92% class

“2” and 100% class “>2” population were below 140, where 3%
of the class “1” population were present. No overlap was found
between class “0” and class “1”, indicating that the classification
parameter N could completely distinguish empty with cell-laden
droplets. The less overlap between class″1″ and class “>1”
was mainly attributed to a few cells being very large and even
reaching the sum of two cells size. According to the parameter
graph, for the recognition of single-cell droplets, N in the range
of 140–190 can reject 100% empty and 92% multi-cells, while
losing 5% single-cell droplets (Figure 2C). For that of multi-cell
droplets, the range below 140 can reject 100% empty and 97%
single-cell, while losing 8% multi-cell droplets (Figure 2D). To
show the recognition accuracy of the sorter, three colors of red,
green, and blue were used to represent class “0”, class “1”, and
class ‘>1″ respectively. In real-time single-cell droplet sorting,
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when detecting class ‘1′, the image processing system denoted
this droplet in green color and simultaneously turned on SSAW
for 200 μs. For the other two classifications, class ‘0″ was denoted
in red color, class ‘>1″ in blue color, and the SSAW remained
off. The average processing time for each microscopic image,
including droplet detection, classification, and decision-making
(Figure 2A), measured using a high-resolution clock from the
C++ chrono library for 10 000 images, was ≈300 μs (recording
as Figure S2, Supporting Information).
The robustness of the GL-IADS needs to be guaranteed. In the

sorter, the exposure parameter and real-time image acquisition
frame rate were fixed to avoid altering the appearance of mov-
ing droplets in the microchannel. However, the gray-level based
droplet recognition method is very sensitive to the light inten-
sity of the microscope, and the light intensity adjusted in each
experiment cannot be exactly the same. To avoid repeated debug-
ging for droplet classification parameters, a light intensity drift
correction algorithm was adopted. First, the average pixels’ gray
value (G1) of the ROI area was calculated in one sorting experi-
ment. Second, a function was set on the basis of G1: GAN (x, y) =
GN (x, y) + (G1 – GN), where GN is the average pixel gray value
of the rectangle area manually selected from ROI in the Nth ex-
periment, GN (x, y) is the gray value of each pixel of ROI area
in the Nth experiment, GAN (x, y) is the adjusted gray value of
each pixel of ROI area in the Nth experiment. The Nth run of the
sorting program represents Nth experiment. Each time running
the sorting program, we just need manually select a rectangle
area in ROI to adjust the gray value of each pixel of ROI then
began the sorting experiment. The light intensity drift correction
algorithm overcomes the light intensity influence of the micro-
scope, ensuring stable droplet classificationwithout changing the
classification parameters every time.

2.3. Detachable Acoustofluidic System for Droplet Deflection

The disposable PDMS channel was assembled with an SAW
transducer under the van der Waals force-induced self-adhesion.
After each test, the disposable PDMS channel was peeled off
and discarded, which avoided cross-contamination and kept the
expensive SAW transducers reusable. The SAW transducer of
U-FIDTs has been proved to have a much stronger transmission
energy than straight IDTs and regular FIDTs because the acoustic
amplitude propagating toward the focused center is larger than
the reverse direction.[23,45] When the two U-FIDTs were applied
with an AC signal, two series of identical SAWs were generated
and propagated along the surface of the LiNbO3 substrate toward
the microchannel. The two traveling SAWs interfered with each
other and formed the SSAW.[46,47] Such SSAW transmitted into
the disposable PDMS channel through amicropillar, the droplets
in the microchannel were deflected into the pressure nodal line
under the effect of ARF.[45] In this chip, the pressure nodal line
was designed to be 60 μm upward from the center of the sort-
ing channel, which is sufficiently deflect all droplets into the
collection outlet.
Due to the strong damping in PDMS, coupling the entire

PDMS channel device to the SAW transducer by a PDMS film
results in severe acoustic energy attenuation.[48] And the thicker
this film is, the more energy is lost. Here, a designed PDMS mi-

cropillar was used to transfer acoustic energy from the LiNbO3
substrate into the PDMS channel. This micropillar covered the
sorting channel while minimizing the contact area between
U-FIDTs and the PDMS device to reduce wave attenuation. In
contrast to other works [48,49] this fabrication of micropillars
does not require photolithography on the film, which could re-
duce the thickness as soon as possible. Meanwhile, no com-
plicated alignment issues occur between the sorting channel
and the micropillar. A droplet deflection experiment was con-
ducted to prove the advantage of the micropillar. Two disposable
PDMS channels, bonding the top PDMS channel to a micropil-
lar (micropillar-PDMS channel) and an untrimmed PDMS film
(film-PDMS channel), respectively, were performed at the same
SAW transducer (U-FIDTs). The thickness of the micropillar and
untrimmedPDMSfilmwas the same. All droplets flowed into the
waste outlet at a flow rate of 370 μLmin−1 when SSAWwas turned
off (Figure 3A,B). After inputting an AC signal with the reso-
nance frequency of 9.73 MHz into U-FIDTs, the deflection dis-
tance of the droplets was recorded by amicroscope (Figure 3D,E).
The quantitative relationship of deflection distance versus input
voltage in each chip is shown in Figure 3G. For the micropillar-
PDMS channel, when the input power was 16 Vpp, the deflec-
tion distance of droplets reached 38 μm, which was enough to
push all droplets into the collection outlet. After the input power
was increased to 32 Vpp, the droplets reached the designed maxi-
mum distance of 60 μm. By contrast, for the film-PDMS channel,
the maximum deflection distance of droplets was 18 μm, even
in 40 Vpp, which could only deflect ≈40% of droplets into the
collection outlet. The assay revealed that the micropillar-PDMS
channel had a smaller acoustic attenuation than the film-PDMS
channel. Another experiment comparing the energy transmis-
sion efficiency of U-FIDTs and regular FIDTs was conducted
(Figure 3A,C,D,F). A same disposable micropillar-PDMS chan-
nel was performed in two SAW transducers (U-FIDTs and reg-
ular FIDTs). Under the resonance frequency (9.63 MHz) of reg-
ular FIDTs, the droplets were also deflected to collection outlet
without omission. However, the regular FIDTs required 40 Vpp
to achieve a maximum deflection distance of 55 μm, whereas U-
FIDTs required only 24 Vpp (Figure 3H). The comparison result
indicated that U-FIDTs had a stronger acoustic energy transmis-
sion efficiency. The detachable acoustofluidic chip assembled by
U-FIDTs andmicropillar-PDMS channel has high energy utiliza-
tion, which make the GL-IADS more reliable to achieve target
droplet sorting.

2.4. Performance of GL-IADS in Sorting Cell Quantity in Droplets

The performance of the GL-IADS was demonstrated by sorting
single-cell droplets from a high-concentration cell encapsulation.
The cell quantity encapsulated in the droplet was dominated by
a Poisson distribution: P (k) = 𝜆

k e−𝜆/k! where k is the number
of cells in a droplet and 𝜆 is the average number of cells in per
droplet.[27] Figure 4E shows the simulated possibility of a num-
ber of cells encapsulated in a droplet with different 𝜆 values from
0.1 to 0.9. Conventional droplet sorters adopt low-concentration
cell encapsulation with 𝜆 less than 0.1 to reduce the propor-
tion of multi-cell droplets. Here, to demonstrate our sorter could
achieve high-accuracy screening of single-cell droplets regardless

Small 2025, 21, 2500520 © 2025 Wiley-VCH GmbH2500520 (5 of 12)

 16136829, 2025, 37, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

ll.202500520 by N
ankai U

niversity, W
iley O

nline L
ibrary on [17/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.small-journal.com


www.advancedsciencenews.com www.small-journal.com

Figure 3. Performance ofmicropillar-PDMS channel andU-FIDTs in comparisonwith film-PDMS channel and regular FIDTs in acoustic energy utilization.
Snapshots of droplet flow in U-FIDTs-micropillar-PDMS channel when SSAW was A) off and D) on. Snapshots of droplet flow in the U-FIDTs-film-PDMS
channel when SSAW was B) off and E) on. Snapshots of droplet flow in regular FIDTs-micropillar-PDMS channel when SSAW was C) off and F) on. Scale
bar: 200 μm. G) Comparison of droplet deflection distance versus input voltage in U-FIDTs-micropillar-PDMS channel and U-FIDTs-film-PDMS channel.
H) Comparison of droplet deflection distance versus input voltage in U-FIDTs-micropillar-PDMS channel and regular FIDTs-micropillar-PDMS channel.

of the presence of multi-cell droplets, we adopted a cell encapsu-
lation with 𝜆 of 0.7 to conduct this experiment. The cell line used
for droplet encapsulation and sorting is human adipose-derived
mesenchymal stem cells (ADSCs).
The droplet classification parameter of N for classes “0”, “1”,

and “>1” were set to ≥190, 140–190, and <140, respectively.
When a single-cell droplet was detected, the U-FIDT was input
with an AC signal with an amplitude of 32 Vpp and resonant
frequency of 9.73 MHz for 200 μs. Figure 4A shows the sorting
process of a single-cell droplet. At 0 ms, a single-cell droplet en-
tered the ROI and immediately displayed a green circle, indicat-
ing this droplet image has been acquired, detected, classification,
and decision-making. At the same time, the function generator
received the command to turn on. At 9.354 ms, the droplet en-
tered the SSAW field and was drawn toward the collection outlet.
At 21.826 ms, the droplet was about to enter the collection outlet,
and an empty droplet entered the ROI. At 43.652 ms, the single-
cell and empty droplet entered the collection and waste outlet re-
spectively, and a new multi-cell droplet was detected in ROI. A
video (Movie S1, Supporting Information) visually showed that

the GL-IADS accurately recognized the three droplet classifica-
tions and sorted the single-cell droplets without mistake. Even
the overlapping cells in the droplet could be successfully clas-
sified because their color is darker than individual cells. When
performing droplet sorting, the distance of the adjacent droplets
must be taken into account. In the GL-IADS, the latency time of
the function generator switch, fully turned on and off after the
sorting-signal trigger, was 12 ms. Therefore, the detection time
interval of adjacent droplets in the ROI needs to exceed 12 ms
to ensure only one droplet in the SSAW field for one separation.
Otherwise, more than one droplet may be sorted at one time, or
the function generator cannot be turned on in time for the next
droplet sorting. In this work, a time interval limit of ≈23 ms be-
tween adjacent droplets was applied by precaution to prevent er-
roneous sorting, achieving a droplet sorting throughput of 43 per
second.
The purity of sorted single-cell droplets was analyzed. Before

sorting, ≈34.7% of droplets contained single-cell while 49.7%
were empty droplets and 15.6% of droplets contained multi-cell
(Figure 4B,E). After sorting, the purity of single-cell droplets
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Figure 4. Performance of GL-IADS. A) A complete sorting process of single-cell droplet, recorded by a CMOS camera at 320 fps (3.118 ms for acquiring
one image). B) Image of droplets with cell encapsulation at 𝜆 = 0.7. C) Image of droplets from the collection outlet after single-cell droplets sorting. D)
Image of droplets from the collection outlet aftermulti-cell droplet sorting. Scale bar: 100 μm. E) Simulated possibility of the number of cells encapsulated
in a droplet with different 𝜆 values from 0.1 to 0.9. F) Distribution of droplets containing different numbers of cells after single-cell droplet sorting. G)
Distribution of droplets containing different numbers of cells after multi-cell droplet sorting.

increased to 97.9%, whereas the empty and multi-cell droplets
decreased to 0.6% (rejecting ≈99%) and 1.5% (rejecting ≈90%),
respectively (Figure 4C,F). According to the sorting result, the
sorting accuracy (also purity, defined as the ratio of sorted tar-
get droplets and sorted droplets) of GL-IADS depends almost en-
tirely on the recognition accuracy due to the reliable acoustoflu-
dic deflection. For example, the accuracy of recognizing empty
and cell-laden droplets was 100%, while the sorting accuracy of
cell-laden reached 99.4%. In the droplet recognition assay, the
loss rate of single-cell droplets is 5% when N in the same range
of 140–190, which can basically represent the loss rate of single-
cell droplets during sorting. In addition, the GL-IADS was also
able to sort multi-cell droplets. Under the same experimental

conditions, the image classification parameter N for multi-cell
droplets was set to the range of <130. When the N of the detected
droplet was below 130, the function generator turned on and
lasted for 200 μs. The sorting process was as in Movie S2 (Sup-
porting Information). After sorting, the multi-cell droplets in-
creased to 97.4%, whereas the single-cell and empty droplets de-
creased to 2.3% and 0.3%, respectively (Figure 4D,G). Moreover,
the size of the sorted droplets remained uniform (Figure 4C,D).
This attributed to the fact that the setting radius threshold of
Hough circle transform can only detect the droplets with di-
ameter of 45 μm, the undetected droplet debris would not par-
ticipate in acoustic sorting operation and flows into the waste
outlet due to a low flow resistance, as shown in the Movie S3

Small 2025, 21, 2500520 © 2025 Wiley-VCH GmbH2500520 (7 of 12)
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Figure 5. Applicability of GL-IADS. A) Recognizing and sorting single-cell droplets of varying sizes. B) Recognizing and sorting single-cell droplets for
different cell types and PS microspheres. C) Single-cell sorting purities for droplets with different diameters. D) Single-cell sorting purities for different
cell types. E) Robustness validation of single-cell sorting under different light intensities.

(Supporting Information). According to these results, the GL-
IADS could achieve label-free, high-accuracy screening of single-
cell, multi-cell or cell-laden droplets from high-concentration
cells encapsulation while controlling the uniform size of
droplets.

2.5. Applicability of GL-IADS in Sorting Droplets of Varying Sizes
and Different Cell Types

Th GL-IADS adopted a Hough Circle Transform algorithm to
identify microdroplets of varying sizes. In principle, this algo-
rithm is based on the geometric characteristics of circles. As long
as the droplets maintain a relatively circular shape, the algorithm
can be adjusted to identify different diameters. To prove that the
sorter is applicable to droplets within a wide size range, we con-
ducted four groups of single-cell sorting experiments targeting
droplets of different diameters (Figure 5A). For droplets with di-
ameters of 38, 47, 58, and 76 μm, we set the radial detection pa-
rameter in the Hough Circle Transform algorithm to be 9–12,
13–15, 15–17, and 19–21 pixels, respectively. The GL-IADS accu-
rately identified the droplets of all sizes without omission. More-
over, in the form of video recording, we analyzed 200 droplets
sorted into the collection outlet for each group. For droplets with
diameters of 38, 47, 58, and 76 μm, the single-cell sorting puri-
ties were 97%, 98%, 98.5%, and 97%, respectively (Figure 5C).
A video (Movie S4, Supporting Information) visually showed
that the GL-IADS accurately identified the four sizes of droplets
and achieved single-cell sorting. The GL-IADS adopted gray-level
recognition method to achieve droplet classification. Since cells
can form a certain gray contrast with droplets, this sorter is suit-
able for sorting different types of cells. To verify this, we carried
out the single-cell sorting of HeLa cells, MC3T3-E1 cells, and

polystyrene (PS) microspheres (Figure 5B). In the form of video
recording, we analyzed 200 droplets sorted into the collection
channel for each group. For MC3T3-E1 cells, HeLa cells, and PS
microspheres, the single-cell sorting purities were 98%, 97.5%,
and 99%, respectively. The video (Movie S5, Supporting Infor-
mation) visually showed that the GL-IADS accurately achieved
single-cell sorting for different cell types. However, it is notewor-
thy that when sorting PS microspheres, we changed the droplet
classification parameter. The gray threshold of 180 was changed
to 90. The number of pixels with a gray value <90 ranging from
10–30 was judged as single-PS droplets. This is because PS mi-
crospheres exhibit a very dark color within droplets, and the num-
ber of pixels with a gray value <90 is 0 for empty droplets. In
addition, to demonstrate the light intensity drift correction algo-
rithm can effectively maintain the robustness of GL-IADS under
varying lighting conditions. A single-cell sorting experiment un-
der different light intensities was conducted. Also, in the form of
video recording, we analyzed 200 droplets sorted into the collec-
tion channel for the two light intensities. For strong and dim light
intensity, the single-cell sorting purities were 98% and 96.5%
(Figure 5E), respectively. Movie S6 (Support Information) visu-
ally demonstrates that GL-IADS can accurately sort single-cell
droplets regardless of relatively strong illumination or dim il-
lumination. The GL-IADS is flexible and adaptable for various
droplet sizes and different cell types, and is also robust under
varying lighting conditions.

2.6. Post-sorting Cell Viability and Proliferation Analysis

The biocompatibility of the GL-IADS was confirmed experimen-
tally. Unlabeled ADSCs were used for droplet generation and
separation. Three cell groups of initial ADSCs (prepared for

Small 2025, 21, 2500520 © 2025 Wiley-VCH GmbH2500520 (8 of 12)
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Figure 6. Viability and proliferation analysis of ADSCs after exposure to SSAW in GL-IADS. A) Viability of ADSCs described above, evaluated by trypan
blue staining. B) Proliferation analysis of ADSCs by cell counting on days 2 and 4 after sorting and seeding. C) Image of ADSC confluence in the six-well
plate on day 4. Scale bar: 100 μm.

experiment but not loaded into droplets), control ADSCs (loaded
into droplets but not exposed to SSAW field), and experimen-
tal ADSCs (loaded into droplet and exposed to SSAW field) were
analyzed for cell viability by trypan blue staining and their prolif-
eration ability. Figure 6A shows the viability percentages of exper-
imental and control groups were 93.5% and 92.9%, respectively,
which decreased by ≈5% compared with that of initial ADSCs.
Considering there almost no difference between the control and
experimental groups, the decreased viability was probably caused
by the toxic reagent of perfluorooctanol during the droplet demul-
sification process. The proliferation ability of cells was verified by
counting cell number under the microscope. The three groups
of ADSCs were seeded in cell culture-treated six-well plates with
an initial number of 73 000 cells. The number of cells on days
2 and 4 were counted. As shown in Figure 6B, the three groups
of ADSCs could proliferate normally, and almost no difference
in the proliferation rate among them. On day 4, the three groups
of ADSCs reached almost 100% confluence in the six-well plate
(Figure 6C). The post-sorting biological analysis proved that the
viability and proliferation of cells after exposure to SSAW field in
the GL-IADS were not affected.

3. Discussion

TheGL-IADS accuracy for cell-laden and single-cell droplets were
>99% and 97.9%. That is, in a library containing 1 million of
droplets to be screened, a 1% error rate means that only 10 000
droplets would be incorrectly sorted. In contrast, a sorter running

at accuracy of 80%will result in 200 000 incorrect droplets, which
is a very large number that could severely impact downstream
analysis and even lead to erroneous conclusions. Thus, the high
accuracy of GL-IADS could improve the efficiency of many bi-
ological assays that require encapsulating cells or even just one
cell, such as cell-laden hydrogel for tissue engineering [28,50] and
single-cell-based analysis.[51,52] In addition, the sorter could also
enrich multi-cell droplets (accuracy of 97.4%), which can be fur-
ther utilized in multicellular spheroid culture and sorting.[39]

The GL-IADS can high-accuracy recognize the droplets con-
taining no cells, exactly one cell, and multiple cells, which en-
ables the GL-IADS to sort single-cell droplets from a high-
concentration cell encapsulation regardless of the probability of
multi-cell droplets, ultimately increasing the sorting throughput
and avoiding large dilution of the cell sample solution. Here, we
achieved single-cell droplet sorting with the purity of 97.9% at
a throughput of 43 Hz, from a cell encapsulation (𝜆 = 0.7) with
a single-cell and multi-cell droplet ratio of 34.7% and 15.5%. In
contrast, to achieve single-cell sorting with a purity of 97.5%,
the technologies that cannot recognize multi-cell droplets need
to adopt high-diluted cell encapsulation (𝜆 = 0.05) with a single-
cell and multi-cell droplet ratio of 4.76% and 0.12% (according to
Poisson distribution).[36] This is still under the consideration that
it can completely reject empty droplets, otherwise, 𝜆 needs to be
further reduced. Comparing the actual throughput, the GL-IADS
can enrich 53.7 k single-cell droplets in 1 h, which is equivalent
to the throughput of 313Hz of those that cannot recognizemulti-
cell droplets. In addition, a heavily diluted cell suspension of gen-
erates mostly empty droplets that encapsulated waste reagent,

Small 2025, 21, 2500520 © 2025 Wiley-VCH GmbH2500520 (9 of 12)

 16136829, 2025, 37, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

ll.202500520 by N
ankai U

niversity, W
iley O

nline L
ibrary on [17/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.small-journal.com


www.advancedsciencenews.com www.small-journal.com

brings cost issues to expensive applications such as single-cell
RNA sequencing,[36,39] which could be solved and avoided by the
GL-IADS.
The gray-level recognition method shortens the image pro-

cessing time to ≈300 μs while ensuring the sorting accuracy of
single-cell, multi-cell, and cell-laden droplets >97%. Moreover, it
does not require a high-performance computing computer and
advanced imaging hardware. To achieve this droplet classifica-
tion, the image processing time of machine learning-IADS ex-
ceeds 14 ms (Table S1, Supporting Information), which limited
their sorting throughput. The current GL-IADS throughput of
43 Hz was chosen based on the maximum frame rate (320 fps) of
CMOS camera and the latency time (12ms) of function generator
to ensure accurate sorting of single-cell droplets. When adopting
a fast-response function generator that commonly used in SAW-
based FADS[23,37] and a high-speed camera such as >2000 fps,
the GL-IADSmake it possible to achieve label-free, high-accuracy
single-cell droplet sorting with an ultra-high throughput up to
hundreds or even KHz. By then, the sorter will have the potential
to revolutionize single-cell researches.
Highly monodispersed droplets are required for many ap-

plications such as cell toxicity screening, antibody discovery,
and drug screening. The presence of polydisperse droplets
could cause them containing inconsistent amounts of biological
reagents. However, the occasional unintentional droplet merging
(resulting in larger droplet) and splitting (resulting in smaller
droplet debris) are unavoidable even in the advanced sorting
operation.[53] The conventional droplet sorters are based on the
droplet parameters such as fluorescent or impedance signals.
In absence of the droplet size information, incorrectly sized
droplets can be easily classified as target object.[36] Our GL-IADS
adopted a Hough circle transform algorithm to achieve target-
size droplet detection. By narrowing the parameter range of cir-
cular radius detection, the sorter enables the sorted droplets to
maintain a uniform size. For example, the setting circle radius
parameter of 13.5–14.5 pixels can high-accuracy detect the target-
size droplets (diameter of 45 μm) without omission. The merged
droplets and droplet debris, whether they contain cell or not, can-
not be detected due to its obvious size difference with the target-
size droplets. The unrecognized droplets cannot participate in
the acoustic sorting operation and automatically flow into the
waste outlet. However, although the sorted droplets remain uni-
form size in this work, the number of droplet debris or merged
droplet is ultimately small compared to the target droplets. In
subsequent works, the specific experiments containing highly-
polydisperse droplets should be designed to further explore and
improve the size control capability of the sorter, such as the trade-
off between size accuracy and droplet miss rate, the space control
of droplet debris with target droplets, thus meeting the require-
ments of applications that are prone to encounter droplet size
uniformity issues.
The GL-IADS is flexible and adaptable. Table S1 (Supporting

Information) summarizes the comparison of some key parame-
ters between GL-IADS and other sorting technologies. The GL-
IADS adopted a Hough circle transform algorithm to achieve
target-size droplet identification. There is no need to rely on a
specific flow channel structure or resort to other technologies.
By properly adjust the circle radius parameter, the sorter is ap-
plicable to sorting droplets of varying diameters and ensure the

size uniformity of sorted droplets. The GL-IADS achieved droplet
classification (empty, single-cell, and multi-cell) based on a gray
recognition method, which is also applicable to different cell
types. Although the optical properties of different cells may dif-
fer slightly, cells are generally visible inside the droplets and have
a certain gray contrast with the droplets. For our GL-IADS, the
more obvious the gray contrast, the easier it is to achieve droplet
classification. However, even when the grayscale contrast be-
tween the cells and the droplets was relatively small, such as un-
der very dim lighting conditions, we were still able to achieve ac-
curate single-cell sorting. Additionally, the GL-IADS also demon-
strated strong robustness under varying lighting conditions.

4. Conclusion

In summary, the GL-IADS integrates a gray-level-based im-
age recognition method with a reliable acoustofluidic actua-
tion system, achieving label-free, high-accuracy screening of
single-cell, multi-cell, and cell-laden droplets. Recognition and
rejection multi-cell droplets overcome the tradeoff between
throughput and purity for single-cell droplet sorting in previous
droplet sorters. Even in the high-concentration cell encapsulation
(𝜆 = 0.7), the purity of GL-IADS sorting single-cell droplets
still reaches 97.9% with a throughput of 43 Hz, by rejecting
≈99% empty and ≈90% multi-cell droplets. Moreover, the sorter
reduces the image processing time to ≈300 μs, which offers
promise to achieve label-free single-cell droplets sorting at ultra-
high throughput up to KHz. The sorter is also applicable to
droplets of varying size and ensures the monodispersity of the
sorted droplets by rejecting merged droplets and/or droplet de-
bris. In addition, the sorter demonstrated high biocompatibil-
ity by cell viability and proliferation assay. The GL-IADS can
be integrated into a broad range of droplet microfluidics-based
screening applications.

5. Experimental Section
Detachable Acoustofluidic Chip Fabrication: The detachable acoustoflu-

idic chip consists of a SAW transducer and a disposable PDMS channel.
The SAW transducer has a set of 16 pairs of U-FIDTs with a finger feature
size of 33 μm and a wavelength of 396 μm, corresponding to a resonance
frequency of 10 MHz. The arc angle and innermost radius of the U-FIDTs
were 20° and 600 μm, respectively. To fabricate the SAW transducer, the
photoresist of AZ5214 (Clariant, USA) was patterned on a 1 mm thick
Y-128° cut LiNbO3 substrate via standard lithography, on which then the
metal layers (Cr/Au, 10/100 nm) were then deposited by magnetron sput-
tering. After a lift-off process, the U-FIDTs were obtained. The disposable
PDMS channel was obtained by bonding the PDMS channel to a PDMS
film with a 20 μm thickness. The PDMS channel was fabricated by stan-
dard soft-lithography (Figure S3A–D, Supporting Information). In brief,
a 50 μm thick microchannel mold was fabricated on a silicon wafer us-
ing SU8-2050 photoresist (MicroChem, USA) by photolithography. PDMS
was mixed with the curing agent (Sylgard 184 Elastomer Kit, Dow Corn-
ing Corp, USA) at a ratio of 10:1 and then poured into the microchannel
mold. After being baked in an 80 °C oven for 2 h, the cured PDMS channel
was peeled from themicrochannel mold and punched with 1mm through-
holes in inlet and outlet positions. Two square cavities are symmetrically
distributed on both sides of the sorting channel of the PDMS channel,
which was used for the formation of micropillars. The PDMS channel and
a PDMS film were permanently bonded after oxygen plasma (PDC-002-
HP, Harrick plasma, USA) treatment and baked in an 80 °C oven for 1 h
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to form the disposable PDMS channel (Figure S3E,F, Supporting Infor-
mation). Then, the micropillar with a width of 660 μm was obtained by
using a knife to cut off the PDMS film piece under two symmetrical cavi-
ties (Figure S3G, Supporting Information). The process of cutting of the
PDMS film piece can be easily completed manually, because this piece did
not touch the top PDMS during the bonding process. Finally, the detach-
able acoustofluidic chip was assembled by hand-placing the disposable
PDMS channel on the SAW transducer with alignment under the micro-
scope (Figure S3H, Supporting Information). After each test, the dispos-
able PDMS channel was peeled and discarded, while the SAW transducer
could be recycled for next use.

Cell Culture and Harvesting: Human adipose-derived mesenchymal
stem cells (ADSCs) were cultured in Iscove’s Modified Dulbecco’s
medium (IMDM) (12440053, Gibco, USA) containing 10% fetal bovine
serum (10270106, Gibco, USA) supplemented with 1% antibiotic-
antimycotic (15 240096, Gibco, USA) and 10 ng mL−1 FGF2 (100-18B,
PeproTech, USA) at 37 °C in 5% CO2. The MC3T3-E1 cells and HeLa
cells weremaintained inDulbecco’sminimumessentialmedium (DMEM)
(11965092, Gibco, USA) supplemented with 10% fetal bovine serum
(FBS; 10270106, Gibco, USA), penicillin (100 U mL−1), and streptomycin
(100 UmL−1; 15240062, Invitrogen, USA) at 37 °C in 5% CO2. The ADSCs,
MC3T3-E1, and HeLa cells were detached using the 1X of trypsin-EDTA
(15090046, Gibco, USA) when reaching ≈80% confluency in a 100 mm
cell culture dish (CS016-0128, ExCell Bio, China), centrifuged at 300 g for
3min. The ADSCs, MC3T3-E1, andHeLa cells were resuspended in IMDM
to prepare for droplet generation.

Random Cell Encapsulation in Droplets: The water in oil droplets were
generated in an independent flow-focusingmicrofluidics chip.[54] A cell so-
lution andHFE-7500 oil were kept in two syringes, which connect the inter-
nal injection port and the peripheral injection port of this chip via polyethy-
lene tubing (0.38 mm ID × 1.09 mm OD; 427 406, BD Intramedic, USA).
The two syringes were pushed by the syringe pump (TS-1B, Longer Pump,
England). Under this experimental condition, monodispersed droplets
were stably generated and collected to prepare for target droplet sorting.

Experimental Setup: The detachable acoustofluidic chip was placed on
the stage of an upright microscope (Nikon Corporation, Japan) with a 4 ×
objective, to which a Hamamatsu CMOS camera (C134440-20CU, Hama-
matsu, Japan) was connected. The droplets were kept in a storage syringe,
and HFE-7500 oil was injected into the inner and peripheral inlet of the
acoustofluidic chip at a flow speed of 10 and 360 μL/30 min, respectively.
The moving droplets in the sorting channel were imaged and acquired in
real time by the CMOS camera. The acquired microscopic images were 8-
bit grayscale images. The field of view of the microscopic image was 1024
× 256 pixels, the field of view of the ROI was 150× 80 pixels, the acquisition
speed was 320 fps, and the exposure time was set to 10 μs. These images
were processed frame by frame for droplet detection, classification, and
decision-making by the image processing system. The image processing
system consists of a debugging program and a sorting program, which
were written in C++ by using the computer vision library OpenCV. The de-
bugging program outputted the corresponding picture and a text file con-
taining pixel information for every detected droplet, which was for data
statistics and parameter correction. However, the large number of high-
definition pictures could cause the computer’s CPU to be fully loaded and
run for only a few minutes only. The sorting program was the same as the
debugging program except that it does not output pictures and text files,
which could keep running for droplet sorting smoothly. Therefore, the sort-
ing program adopted the correction parameters of the debugging program
to conduct sorting experiments. Calculations were performed on a desk-
top computer (DELL, Windows 10, 64-bit operating system with an Intel
i5-12500 3.0 GHz processor with 8192 MB RAM). When a target droplet
was detected, the image processing system gave the function generator
(DG4162, Rigol, China) a turn-on sine wave command of 9.73 MHz fre-
quency and 0.8 Vpp voltage. The sinewave was amplified by a factor of
32 dB with a power amplifier (RF-UWB-10M1G-8 W, China) to make the
voltage reach 32 Vpp, which was then split to two signals and applied to
two identical U-FIDTs to generate SSAW for droplet deflection.

Cell Viability and Proliferation Assay: The initial ADSCswere suspended
in 1 mL of fresh medium in 1.5 mL tube at room-temperature. The control

ADSCs and experimental ADSCs were recovered through a droplet rupture
process as follows. First, 300 μL of 20% 1H, 1H, 2H, 2H-perfluorooctanol
(AAB2015609, Thermo Scientific, USA) was added into the droplet collec-
tion tube and gently vortexed for 1 min for the droplets to merge into a
bulk solution. Second, the upper bulk solution was transferred to a new
tube and centrifuged at 300 g for 5 min to collect the cells. The collected
control and experimental ADSCs were then resuspended in 1 mL of fresh
medium in 1.5 mL tube. Afterward, the cell viability of the three groups
was analyzed by trypan blue staining (ST2780, Beyotime, China) and mi-
croscopic observation. Proliferation assay was conducted in the cells. The
three groups of ADSCs were seeded in cell culture-treated six-well plates
with an initial number of 73 000 cells. Then, the number of cells on days
2 and 4 were counted by a hemocytometer (Marienfeld Superior, Marien-
feld, Germany) under amicroscope (Axio Vert.A1, Germany) with a camera
(Axiocam 105 color, Germany).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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