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A B S T R A C T

Retinal vein occlusion (RVO) is a serious condition that can lead to blindness. Injecting drugs into the retinal vein 
is a promising procedure for treating RVO. Due to the fragility of the retinal tissue, maintaining a precise drug 
flow rate (DFR) with a fast response is critical. Considering the unknown disturbance from piston dynamic and 
the drug-vein interaction, an adaptive self-evolving neural terminal sliding mode (ASNTSM) controller is pro-
posed for DFR tracking. The integral terminal sliding surface is adopted to track the desired DFR in finite-time. 
The extreme learning machine (ELM) is utilized to estimate overall disturbances, and the adaptive switching gain 
is employed to compensate for the estimation error without requiring prior bounds. To achieve a compact ELM 
structure, a self-evolving mechanism is designed to implement the growth or pruning strategy of the hidden 
neurons. Theoretical analysis has proven that the ASNTSM controller can guarantee finite-time stability. 
Comparative experiments are conducted using a silicon phantom with simulated blood flow disturbances. The 
experimental results illustrate that the ASNTSM controller not only achieves lower transient time and average 
steady-state error, but also exhibits lower fluctuation and chattering effect. The self-evolving mechanism en-
hances the practicability of neural network in artificial intelligence-based medical engineering. Therefore, the 
ASNTSM controller is suitable for retinal vein injection tasks to improve surgical efficiency.

1. Introduction

Currently, humans are confronted with a variety of retinal diseases, 
including retinal injury, fundus hemorrhage, and macular edema, all of 
which significantly impact the quality of life (Laouri et al., 2011). 
Retinal vein occlusion (RVO) is a prevalent retinal disease that can 
induce significant visual impairment and, in some cases, complete loss of 
vision (Rogers et al., 2010). The treatment of RVO often involves retinal 
vein cannulation (RVC), a surgical procedure that requires accurate and 
stable drug injection into the retinal vein, as illustrated in Fig. 1. Spe-
cifically, the procedure involves manipulating a needle to rotate around 
the scleral incision to reach the retina. Once aligned with the target vein, 

the surgeon pierces the vein wall, injects the drug, and then withdraws 
the needle to complete the operation (Gerber et al., 2021). This surgical 
procedure typically relies on high-precision surgical tools and the skill of 
experienced surgeons, resulting in increased treatment costs. Conse-
quently, the surgery is not yet widely adopted and remains largely in the 
research phase, with only a limited number of clinical cases reported 
(Willekens et al., 2017, 2021).

In the process of RVC surgery, the drug flow rate (DFR) directly 
impacts the efficiency and safety of the procedure. Precise control of 
DFR ensures effective injection volumes and minimizes potential dam-
age to the patient (Zhang et al., 2023). Rapid tracking of DFR can also 
reduce the duration of RVC surgery. Therefore, ensuring a fast and 
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precise DFR is crucial, and it requires a reliable retinal vein injection 
system to achieve these performance goals. Vitreous cutting machine is a 
typical instrument used in retinal surgery (Kitagawa et al., 2023). Its 
injection module relies on air pressure to deliver drugs into the subretina 
or retinal vein lumen. However, the compressibility of air reduces the 
stability of DFR, making it difficult to mitigate the risk of retinal tissue 
damage (Xu et al., 2024). Moreover, the vitreous cutting machine has a 
low degree of automation and lacks DFR feedback, which cannot guar-
antee consistent injection performance. To address these limitations, Xu 
et al. (2024) designed a silicone oil-driven retinal vein injection system. 
In this system, a motor provides a stable driving force for drug injection. 
The addition of silicone oil not only buffers the motor’s chattering but 
also enables DFR feedback. Consequently, this type of retinal vein in-
jection system is expected to provide fast and precise DFR control with 
reliable feedback, thereby enhancing surgical outcomes.

Achieving fast and precise control of the drug flow rate (DFR) is 
challenging due to disturbances from the syringe piston and retinal 
tissue (Kim et al., 2019). As illustrated in Fig. 2, the silicone oil-driven 
retinal vein injection system lacks a rigid connection between the sy-
ringe piston and the motor-driven piston. During the start-up phase, the 
syringe piston must overcome unknown friction, leading to significant 
overshoot (Kim et al., 2019; Xu et al., 2024). This overshoot can shock 
the retinal vein tissue, potentially causing mechanical damage and 
increasing the risk of bleeding. In addition to unknown piston friction, 
drug-vein interactions introduce further disturbances to DFR control at 
the microscopic level (Wu et al., 2013). In clinical applications, 
obtaining prior knowledge of drug-vein interactions is difficult and re-
lies on extensive clinical data, making modeling both complex and 
costly. These disturbances not only affect the rapidity of DFR tracking 
but also increase tracking errors, which are unacceptable in clinical RVC 
surgery. Moreover, the long transient time associated with overshoot 
degrades the fast response of the DFR, potentially prolonging the 
duration of RVC surgery. Based on this analysis, designing a 
high-precision, robust controller with a fast response to unknown dis-
turbances is a key motivation of this study.

Given the presence of unknown nonlinear disturbances in retinal 
vein injection systems, traditional control methods (such as proportio-
nal–integral–derivative control) struggle to achieve satisfactory control 
performance. To address control challenges across various fields, 
numerous advanced control strategies have been proposed, including 
adaptive control (Annaswamy et al., 2023), model predictive control 

(MPC) (Fei and Liu, 2021), intelligent control (Fei et al., 2021), and 
sliding mode control (Utkin et al., 2020). Adaptive control and MPC rely 
on precise system dynamics, and the disturbances encountered in retinal 
vein injection system can limit their applicability. Intelligent control, a 
data-driven approach, is well-suited for handling uncertain and 
nonlinear systems. Among these, the neural network (NN) controller 
stands out for its ability to approximate nonlinear factors effectively. 
The NN controller can theoretically ensure the convergence of tracking 
and approximation errors (Fei et al., 2021). However, considering the 
clinical requirements of RVC, relying solely on NN controller is insuffi-
cient to simultaneously achieve both rapidity and precision. It is well 
known that sliding mode (SM) controllers offer strong robustness and 
high control accuracy (Utkin et al., 2020). However, SM controller can 
only theoretically guarantee the asymptotic convergence of the 
closed-loop system to zero, which does not meet the fast response re-
quirements for DFR control. Terminal sliding mode (TSM) controller, as 
an improvement over SM controllers, enhance convergence speed (Dong 
et al., 2022). In the medical field, fast-response control systems have 
significant clinical benefits. In Feng et al. (2022), an adaptive integrated 
terminal sliding mode force controller was designed for ear surgery, 
achieving higher tracking performance. In Fuentes-Alvarez et al. (2022), 
a strategy combining recurrent NN and adaptive non-singular fast ter-
minal sliding mode controller was used to control the trajectories of an 
exoskeleton, offering both accuracy and intelligence. However, these 
medical applications typically prioritize precision over response speed, 
which is not suitable for DFR control that requires a fast response. 
Additionally, the discontinuous control law of TSM controller can pro-
duce control chattering, particularly due to the lack of inherent 
disturbance-rejection mechanism. This phenomenon has the potential to 
shorten the lifespan of the retinal vein injection system.

Given the advantages of TSM controller in terms of convergence 
speed and tracking accuracy, combining TSM controllers with observers 
is expected to enhance robustness and reduce chattering. Model-based 
observers, such as disturbance observer (Ding et al., 2020), sliding 
mode observer (Wang et al., 2022), and extended state observer (Zhang 
et al., 2021), are widely used in control applications. These observers 
rely on prior knowledge of system dynamics and are suitable for con-
stant disturbances. However, DFR control faces uncertainties in piston 
friction and unknown drug-vein interactions. Furthermore, during 
different stages of retinal vein injection, disturbances caused by piston 
friction primarily occur during the start-up phase, while disturbances 
from drug-vein interactions affect dynamic performance after the 
start-up phase. These varying and unknown nonlinear disturbances limit 
the estimation performance of model-based observers. It is feasible to 
use NN as an auxiliary technology to estimate unknown disturbance 
without prior knowledge (Liu et al., 2020). Compared to model-based 
observers, the combination of TSM controller and NN observer is more 
suitable for retinal vein injection. This framework can leverage the 
approximation capabilities of NNs and is expected to compensate for 
unknown nonlinear disturbances while ensuring accuracy and rapidity 
(Hou et al., 2024a). Among widely used NN estimators, the extreme 
learning machine (ELM) is known for its simple structure and fast 

Fig. 1. Retinal vein injection process.

Fig. 2. The diagram of the retinal vein injection system.
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training speed (Huang et al., 2015; Berghout et al., 2020; Wu et al., 
2023). In practice, the hidden layer size of ELM primarily affects the 
performance. Determining the structure based on manual experience is 
limited in improving control precision. For DFR control, ELM with a 
fixed structure struggles to adapt to varying disturbances. Excess neu-
rons increase computational complexity, while insufficient neurons 
make it difficult to estimate complex disturbances accurately. Although 
intelligent algorithms can achieve structural optimization, results based 
on historical data cannot adapt to varying clinical scenarios (Xia et al., 
2022). Currently, self-evolving mechanisms offer a way to obtain 
compact structures with better performance (Fei et al., 2022a,b; Hou 
et al., 2024b). In Fei et al. (2022a), a self-evolving recurrent Chebyshev 
fuzzy NN approximator combined with a fractional-order SM controller 
was designed for an active power filter to suppress harmonic distortions. 
The NN approximator in this study can achieve structure updating 
without predefined neurons. Although self-evolving mechanisms have 
demonstrated effectiveness in other studies, their application in ELM is 
restricted due to its unique architectural characteristics. Since the input 
weights of ELM are fixed, self-evolving mechanisms designed for other 
networks, such as fuzzy NNs or broad networks, cannot be directly 
applied to ELM estimators (Fei et al., 2022b; Han et al., 2024). From a 
control system perspective, changes in the hidden structure can affect 
closed-loop stability (Chen and Dong, 2024; Ding et al., 2024). This 
makes the design of a self-evolving mechanism for control tasks different 
from that for classification or prediction tasks. In addition, although the 
NN estimator can reduce chattering by employing a lower switching 
gain, its inherent approximation error cannot be ignored. A fixed 
switching gain is insufficient to effectively compensate for this approx-
imation error. To enhance tracking precision in the presence of distur-
bances, it is crucial to design a self-evolving mechanism specifically 
tailored for the ELM and to implement an adaptive switching gain for 
DFR control.

In light of the aforementioned challenges associated with retinal vein 
injection, it is imperative to develop a control strategy that achieves 
both high precision and rapid response while remaining robust to 
varying nonlinear disturbances. To this end, an adaptive self-evolving 
neural terminal sliding mode (ASNTSM) control scheme is proposed 
for DFR control. Specifically, a composite control framework is designed 
by integrating a TSM controller with an ELM estimator. Moreover, an 
adaptive gain law and a self-evolving mechanism are developed to 
dynamically update the switching gain and hidden layer structure, 
respectively. The main contributions of this paper are as follows. 

1) Given the stringent temporal and precision requirements of RVC 
surgery, achieving rapid and precise tracking control of the DFR is of 
paramount importance. TSM control is selected as the fundamental 
strategy to enhance the convergence speed and tracking accuracy of 
the DFR. Thanks to the TSM surface, the proposed ASNTSM 
controller can theoretically achieve finite-time stability while 
maintaining robustness, which is a significant improvement over 
traditional SM control.

2) To address the unknown piston dynamics and drug-vein interaction 
disturbances in DFR control, the ELM is employed to compensate for 
these unknown nonlinear disturbances. The goal is to further 
improve tracking accuracy while reducing chattering. Compared to 
model-based observers, the ELM is chosen for its superior nonlinear 
approximation capability and simple structure, making it well-suited 
for deployment in the retinal vein injection system.

3) To cope with the characteristics of varying disturbances, two adap-
tive laws are designed. A self-evolving mechanism is proposed to 
enable online structure updating of the ELM. This customized 
mechanism, based on tracking error and defined neuron importance, 
achieves the growth or pruning of hidden neurons. Theoretical 
analysis demonstrates that this self-evolving mechanism does not 
affect closed-loop stability. Additionally, an adaptive switching gain 
is employed to compensate for the estimation error of the ELM. The 

adaptive switching gain theoretically avoids overestimation and 
further reduces the chattering. Compared to fixed estimator and 
fixed switching gain, the ASNTSM controller has the ability to adapt 
to varying disturbances in DFR control.

The remainder of this article is organized as follows. The retinal vein 
injection system modeling is described in Section 2, along with funda-
mental knowledge of ELM. The ASNTSM controller, self-evolving 
mechanism, stability analysis, and guidelines for parameter selection 
are delineated in Section 3. Experiments are carried out in Section 4 to 
verify the efficacy of ASNTSM controller in various simulated blood flow 
disturbances. Section 5 serves as the conclusion.

2. Problem formulation

2.1. Retinal vein injection system modeling

The structure of the retinal vein injection system is shown in Fig. 2. In 
this system, a motor-driven piston propels silicone oil, which in turn 
drives the syringe piston to deliver the drug fluid. Given the elastic 
properties of the rubber piston, the dynamics of the silicone oil flow can 
be modeled as a first-order system. (Kim et al., 2019; Xu et al., 2024). 

A1Q̇1 +B1Q1 = v1 + d1 (1) 

where Q1 and Q̇1 represent the flow rate of the silicone oil and its first 
derivative, respectively. v1 denotes the velocity of the motor-driven 
piston p1. d1 denotes the unknown disturbance. A1 and B1 are positive 
parameters. For the syringe, disregarding the effects of pressure 
changes, silicone oil leakage, and piston friction, the relationship be-
tween the velocity of the syringe piston v2 and the DFR Q2 is simplified 
as (Helian et al., 2022): 

Q2 = Sv2 + d0 (2) 

where S denotes the inner area of the syringe piston p2. d0 denotes the 
unknown disturbance. Similar to Eq. (1), the dynamics of DFR Q2 can be 
obtained as: 

A2Q̇2 +B2Q2 = v2 + d2 (3) 

where Q2 and Q̇2 represent the DFR and its first derivative, respectively. 
v2 denotes the velocity of the syringe piston p2. d2 denotes the modeling 
uncertainty, primarily caused by the elasticity of the rubber. A2 and B2 
are positive parameters. Based on Eqs. (1)–(3), the following second- 
order dynamics can be obtained. 

A1A2SQ̈2 + S(A1B2 +A2B1)Q̇2 +B1B2SQ2 = v1 + dQ (4) 

where Q̈2 denotes the second derivative of the DFR Q2, dQ denotes the 
overall disturbance. Eq. (4) can be further simplified as: 

Q̈2 + aQ̇2 + bQ2 = cv1 + d (5) 

where a = A1B2+A2B1
A1A2

, b = B1B2
A1A2

, c = 1
A1A2S, d = 1

A1A2SdQ. Select the state 

variable as x = [x1, x2]
T
= [Q2, Q̇2]

T and control input as u = v1, the 
system dynamics given by Eq. (5) can be rewritten as follows: 
{

ẋ1 = x2
ẋ2 = cu − ax2 − bx1 + d (6) 

The system parameters a, b and c are partially unknown, which can 
be expressed as a = an + Δa, b = bn + Δb, and c = cn + Δc, where an, bn, 
and cn are the nominal terms, and Δa, Δb, and Δc are the bias terms. We 
assume that the closed-loop control law u is upper bounded by |u| < μ0, 
where μ0 is a positive constant. Therefore, the retinal vein injection 
system can be rewritten as: 
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{
ẋ1 = x2
ẋ2 = cnu − anx2 − bnx1 + dt

(7) 

where dt = − Δax2 − Δbx1 − Δcu + d denotes the lumped disturbance. 
We assume that the unknown bias term Δa, Δb, and Δc are continuous 
and bounded, i.e., |Δa| ≤ a, |Δb| ≤ b, |Δc| ≤ c, where a, b, and c are 
positive constants. The d is continuous and bounded by |d| ≤ d. Then the 
lumped disturbance dt is upper bounded by: 

|dt | ≤ |Δax2| + |Δbx1| + |Δcu| + |d|
≤ (cμ0 + d)+ b|x1| + a|x2|.

(8) 

Remark 1. The friction dynamics of the syringe piston are difficult to 
model directly, especially given the unobservable velocity of the syringe 
piston. Additionally, the unknown disturbances arising from drug-vein 
interactions cannot be explicitly incorporated into the above DFR dy-
namics. Therefore, a learning-based approach is necessary to estimate 
these overall unknown disturbances.

2.2. ELM

The single-layer feedforward network is widely recognized as one of 
the most common NN models, with backpropagation being the tradi-
tional method employed to optimize network weights. However, back-
propagation, which relies on gradient descent, is known for its 
drawbacks, including slow learning speed and susceptibility to local 
minima. To address these limitations, the ELM method has been pro-
posed as an alternative to backpropagation. The fast learning speed of 
ELM is attributed to its random generation of input weights and biases, 
which eliminates the need to iteratively train the output weights (Huang 
et al., 2015). In this section, a brief overview of the fundamentals of ELM 
is provided. For a given sample set 

(
zj, tj

)
, the outputs of the ELM 

approximator with Nh hidden nodes can be described by 

∑Nh

i=1
βiG
(
wizj + gi

)
= tj, j=1,⋯,N. (9) 

where zi = [zi1, zi2,⋯, zim]
T
∈ Rm is the input vector, ti = [ti1, ti2,⋯, tin]T ∈

Rn is the output vector, wi = [wi1,wi2,⋯,wim]
T
∈ Rm is the input weight 

vector, gi represents the bias of the hidden neurons, βi = [βi1, βi2,⋯, βin]
T 

is the output weight vector connecting the i-th hidden neurons and the 
output neuron, and G( ⋅) denotes the activation function. Subsequently, 
Eq. (9) can be further rearranged into the following form: 

Hβ=T (10) 

where 

H(z,w, g)=

⎡

⎣
G(z1,w1, g1) ⋯ G

(
z1,wNh , gNh

)

⋮ ⋯ ⋮
G(zN,w1, g1) ⋯ G

(
zN,wNh , gNh

)

⎤

⎦ ∈ RN×Nh 

denotes the hidden layer output matrix. The output weight matrix is β =
[
βT

1 , βT
2 ,⋯, βT

Nh

]T
∈ RNh×n, and the output matrix T =

[
tT
1 , tT

2 ,⋯, tT
L
]T

∈

RN×n.
The ELM has the following property (Huang et al., 2015): For any 

small positive value εN, and an infinitely differentiable activation 
function G( ⋅), there exists a number of the hidden neuron Nh ≤ N such 
that, for N arbitrary distinct samples 

(
zj, tj

)
, and for any input weight w 

and bias g selected from any intervals of Rm and R, respectively, based 
on a continuous probability distribution, then with probability one: 

‖H(z,w, g)β − T‖=‖εN(z)‖ < εN. (11) 

Define β̂ as the estimating values of β. The optimal values β* are 

usually obtained by employing the least-square algorithm for fast 
training of ELM, which satisfies 

‖H(z,w, g)β̂ − T‖=min
β

‖H(z,w, g)β − T‖. (12) 

The estimated output weight β̂ can be obtained based on the 
following equality. 

β̂ =H†T (13) 

where H† is the Moore–Penrose generalized inverse of the matrix H. 

Remark 2. In contrast to its use in tasks like classification or prediction 
(Berghout et al., 2020), the application of ELM in controller design re-
quires real-time iteration. Consequently, it is essential to utilize an on-
line update law for the subsequent controller design, differentiating it 
from the solution form of Eq. (13).

3. Controller design

3.1. Overall control structure

To design the controller, the following integral terminal sliding mode 
surface is defined as follows (Lian et al., 2021). 

s= ėQ +

∫ t

t0
λ1|eQ|

γ1 sign(eQ) + λ2|ėQ|
γ2 sign(ėQ)dτ (14) 

where eQ = x1 − xd denotes the tracking error. λ1, λ2, γ1, and γ2 are the 
positive parameters to be designed. sign( ⋅) represents the symbolic 
function. Moreover, based on the principles of ensuring the system Eq. 
(15) for s = 0 is Hurwitz, the γ1 and γ2 can be designed to satisfy Eq. (15)
to make the sliding variable differentiable. 
{

γ1 ∈ (0,1)
γ2 = 2γ1/(γ1 + 1) (15) 

For r > 0, ∀x ∈ R, |x|rsgn(x) is a monotonically increasing smooth 
function (Lian et al., 2021). Based on the sliding mode surface, we have 

ṡ= − anẋ − bnx+ cnu+ dt − Q̈d + λ1|eQ|
γ1 sign(eQ) + λ2|ėQ|

γ2 sign(ėQ).

(16) 

Considering the uncertainty of parameters and external disturbance, 
dt is generally unknown during drug injection. Depending on the 
powerful nonlinear learning ability of NN, the ELM can be used to es-
timate the overall disturbance dt to improve the control performance. 
According to the theory of ELM, the input weights and bias are randomly 
generated, and only the output weights need to be trained during the 
closed-loop control process. Different from conventional ELM by solving 
offline, the output weight β ∈ RNh×1 is adaptively updated online. Thus, 
the nonlinear uncertain term d̂t(z, β) is estimated by ELM approximator 

d̂t(z, β) = h(z)β̂ (17) 

where z = [eQ, ėQ,Qd, Q̇d]
T and h(z) ∈ RNh×1 denote the input vector and 

the output of the hidden layer, respectively. In this paper, the input 
weight and bias are chosen randomly within the range [− 1, 1] and [0,1]. 
As the approximation property of the ELM, the nonlinear disturbance 
term d̂t(z, β) can be approximated on an appropriate compact set. The 
output weight β* is calculated by 

β* = argmin{supz∈Z|dt(z, β*) − d̂t(z, β̂)|}
s.t. dt(z, β*) = h(z)β* + εN

(18) 

where εN represents the approximated error in ∀z ∈ Z, which is bounded 
by |εN| ≤ ηN, ηN is a positive unknown constant.

Without considering the nonlinear uncertain term, based on Eq. (16)
with ṡ = 0, we can obtain the following equivalent control input 
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ueq =
1
cn

(

anx2 + bnx1 + ẍd − λ1|eQ|
γ1 sign(eQ) − λ2|ėQ|

γ2 sign(ėQ) − h(z)β̂
)

(19) 

where ̂β is the adaptive weight related to the uncertainties. Furthermore, 
a reaching control input with adaptive switching gain is obtained as 
follows. 

usw =
1
cn

( − k̂0sign(s) − k1s) (20) 

where k1 is the control gain to be selected. ̂k0 is the adaptive gain related 
to the estimation error ηN of ELM. k̂0 and β̂ are updated by the following 
adaptive update laws: 

˙̂k0 = |s| − αk k̂0 (21) 

˙̂β =Γ
(
h(z)T

|s| − αβ β̂
)

(22) 

where αk, Γ, and αβ are positive constants. By summing up the equivalent 
and reaching control laws, the overall control input is derived as 

uASNTSM = ueq + usw. (23) 

Remark 3. The integral sliding surface in Eq. (14) can increase 
sensitivity to the uncertainties and measurement noise, thereby increase 
the chattering effect. However, thanks to the design of the ELM, dis-
turbances can be estimated without prior information. With the adaptive 
gain design, estimation error can be adaptively compensated for while 
reduce chattering. Additionally, chattering can be further reduced 
through appropriate parameter selection and smoothing of the sign 
function. These techniques are further detailed in Section 3.2 and 4.4.

Remark 4. Based on Eq. (21) and the initial condition k̂0(0), we can 
obtain ̂k0(t) = exp( − αkt)k̂0(0)+

∫ t
0 exp( − αk(t − τ))|s|dτ > 0, ensuring 

that the adaptive gain remains greater than zero (Su et al., 2022). In the 
designed adaptive gain law given by Eq. (21), the first term increases the 
gain in proportion to the magnitude of the sliding mode variable, 
thereby enhancing robustness against disturbances. The second term, on 
the other hand, reduces the gain as the sliding mode variable approaches 
the sliding surface. By combining these two terms, overestimation of the 
adaptive gain can be avoided and the chattering effect can be reduced.

Remark 5. The main features of the proposed method are that the 
integral terminal sliding mode surface of Eq. (14) is adopted to design 

the control law, which can achieve smaller tracking error and faster 
convergence speed (Zheng et al., 2014). Then, the overall disturbance of 
the retinal vein injection system is compensated by the ELM, and the 
approximate error of the ELM is further estimated by adaptive gain 
based on Eq. (20). The overall ASNTSM control scheme is shown in 
Fig. 3.

3.2. Self-evolving mechanism design

The self-evolving mechanism consists of two distinct phases: growing 
and pruning. During the growing phase, a neuron is added when the 
specified growth condition is met. Conversely, during the pruning phase, 
a neuron is removed when the specified pruning condition is satisfied. 
The specific details are as follows.

3.2.1. Growing phase
During the tracking process, we aim to add neurons in instances 

where the control error is significant to offset the decrease in control 
performance resulting from uncertainty. Given the complexity of the 
judgment error at each sampling moment and its susceptibility to noise, 
inspired by Qiao et al. (2022), we utilize the mean absolute error (MAE) 
as the basis for judgment. High values of the MAE indicate poor per-
formance, while low MAE values are associated with achieving good 
performance. In this paper, a periodic MAE is used to measure the 
tracking error with a pre-defined time interval ΔT, which can be 
described as 

MAE(i)=
1
Nt

∑(i− 1)⋅ΔT

t=(i− 2)⋅ΔT+Δt

|e(t)| (24) 

where Nt represents the number of samples during time interval ΔT. 
Specially, MAE(0) = 0 and MAE(1) = e(0). Based on MAE, the growth 
mechanism is triggered when the following conditions are met: 
{

MAE(i) > ε0
MAE(i) − MAE(i − 1) > ε1

(25) 

where ε0 and ε1 are the predefined positive parameters. At this time, one 
hidden layer neuron is added, and the input weight and output weight 
are generated as follows. 

wNh+1 =wg (26) 

βNh+1 = βg = 0 (27) 

where the growth input weight wg ∈ Rm is generated randomly.

Fig. 3. The block diagram of overall control system.
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3.2.2. Pruning phase
We define the importance of the j-th hidden layer neurons at time t: 

Ξ(j)=
⃒
⃒βj

⃒
⃒

∑Nh
k=1|βk|

(

1 −
1

Nh − 1
∑

l∈Sn ,l∕=j

ρ
(
Uj,Ul

)
)

(28) 

where Uj and Ul represent the output vector of the j-th and l-th output 
neuron during the time interval ΔT, respectively. ρ

(
Uj,Ul

)
represents 

the correlation coefficient between variables Uj and Ul, and ρ
(
Uj,Ul

)
∈

[0,1]. So we define the pruning trigger condition as: 
⎧
⎨

⎩

MAE(i) ≤ ε0
MAE(i) − MAE(i − 1) ≤ ε1
Ξj = argmin

[
Ξ1,⋯,ΞNh

]
< μΞ − kΞσΞ

(29) 

where μΞ and σΞ represent the mean and standard deviation of the 
importance vector of hidden layer neurons, respectively. The pruning 
condition is inspired by the k-sigma rule in statistical process control 
(Aradhya et al., 2022). It refers to the level of variability within a spe-
cific dataset. The parameter kΞ controls the confidence level of the sigma 
rule, which quantifies the sensitivity for pruning the hidden neurons. 
When the above pruning conditions are met, the j-th hidden layer 
neuron will be removed. The input and output weights of ELM will also 
be updated: 

wj =0 (30) 

βʹ
js = βjs + βjhj

/
hjs , βj = 0 (31) 

where js = argmax
k∕∈j

[
ρ
(
Uj,U1

)
,⋯, ρ

(
Uj,Uk

)
,⋯, ρ

(
Uj,UNh

)]
represents the 

neuron with the strongest correlation to the pruned neuron. βjs and βʹ
js 

represent the before and after updated output weight of the js-th neuron, 

respectively. hj and hjs represent the hidden layer output of the j-th 
neuron and the js-th neuron when the pruning phase is triggered. 

Remark 6. The ELM approximator has the capability to adaptively 
adjust the hidden layer structure during the closed-loop control process, 
in accordance with the proposed self-evolving mechanism, thus 
achieving a more compact structure. In this paper, the initial hidden 
neuron is chosen as 4, which is consistent with the number of input 
variables. The flowchart of the self-evolving mechanism within pre-
defined time interval is shown in Fig. 4.

Remark 7. The self-evolving mechanism serves as the structural 
adjustment rule for ELM, introducing additional computational over-
head. The calculation process of the self-evolving ELM primarily consists 
of three components: weight initialization, updating of the hidden 
structure, and updating of the output weights. In the first control period, 
for an ELM with m input nodes and Nh(0) hidden-layer nodes, the 
computational complexity of weight initialization is O(mNh(0)). During 
the fixed triggering period, structure updating mainly involves impor-
tance calculation, with a computational complexity of O

(
N2

h(t)
)
. The 

computational complexity of the output weight updating is O(Nh(t))
during each control period (Han et al., 2018). It is evident that the 
computational complexity of the self-evolving ELM is primarily related 
to Nh(t). Since Nh(t) can be adjusted online according to the control 
performance and excessive growth is unlikely, its computational 
complexity does not increase significantly compared to fixed-structure 
ELM. Therefore, the computational complexity of the self-evolving 
ELM is affordable, especially when the adjustment frequency of the 
structure is low.

3.3. Stability analysis

In this paper, we prove the finite-time stability of the retinal vein 
injection system on the basis of the Lyapunov criterion. Before the sta-
bility analysis, the following Lemma 1 is first introduced. 

Lemma 1. (Shao et al., 2021): Given the following first-order nonlinear 
differential inequality: 

V̇(x)+ ϑV(x) ≤ ϖ (32) 

where ϑ > 0, ϖ > 0, and V(x) represents a positive Lyapunov function with 
respect to the state x, then for any given initial condition V(x(0)) = V(0), the 
function V(x) converges to the following region 

V(x) ≤ ϖ / ϑ(1 − θ) (33) 

in the finite time 

t ≤ ln(ϑ(1 − θ)V(0) /ϖ)/ϑθ (34) 

where 0 < θ < 1.

Theorem 1. Consider the retinal vein injection system Eq. (7). By using 
ASNTSM controller Eq. (23) with the adaptive updating laws Eqs. (21) and 
(22) with fixed ELM structure, the sliding variable s, weight estimation error ̃β 
and switching gain estimation error k̃ will remain within a small region in 
finite time.

Proof. we consider a Lyapunov function candidate as 

V1 =
1
2
s2 +

1
2

β̃
T
Γ− 1β̃ +

1
2
k̃

2
0 (35) 

where β̃ = β* − β̂ and k̃0 = k*
0 − k̂0 denote the estimation errors of ELM 

weight and switching gain, respectively. Then differentiating with respect to 
time, it follows that 

V̇1 = sṡ − Γ− 1β̃
T ˙̂β − k̃0

˙̂k0 (36) 

Substituting Eq. (16) into Eq. (36) yields 

Fig. 4. The flowchart of the self-evolving mechanism.

B. Hu et al.                                                                                                                                                                                                                                       Engineering Applications of Artiϧcial Intelligence 152 (2025) 110789 

6 



V̇1 = s
(

ëQ + λ1|eQ|
γ1 sign(eQ)+ λ2|ėQ|

γ2 sign(ėQ)

)

− β̃
T
Γ− 1 ˙̂β − k̃0

˙̂k0

= s
(

− anẋ − bnx+ cnu+ d − ẍd + λ1|eQ|
γ1 sign(eQ)+ λ2|ėQ|

γ2 sign(ėQ)

)

− β̃
T
Γ− 1 ˙̂β − k̃0

˙̂k0.

(37) 

Substituting the control law Eq. (23) into Eq. (37) yields 

V̇1 = s( − h(z)β̂ + h(z)β* − k̂0sign(s) − k1s) − β̃
T
Γ− 1 ˙̂β − k̃0

˙̂k0

= s(h(z)β̃+ η* − k̂0sign(s) − k1s) − β̃
T
Γ− 1 ˙̂β − k̃0

˙̂k0.
(38) 

According to the adaptive gain law Eq. (21) and the weight update law 
Eq. (22), we can obtain the following inequality 

V̇1 ≤ |s|h(z)β̃+ |η*||s| − k1s2 − k̂0|s| − |s|h(z)β̃ − k̃0|s| +αββ̃
T

β̂ + αkk̃0 k̂0

≤ ηN|s| − k1s2 − k̂0|s| − k̃0|s| +αββ̃
T

β̂ + αkk̃0 k̂0

≤ − k1s2 +αββ̃
T

β̂ + αkk̃0 k̂0.

(39) 

For any νβ > 1/2, νk > 1/2, one obtains 

αββ̃
T

β̂ ≤ − αβ
(
2νβ − 1

)
β̃

T
β̃
/

2νβ + αβνββ*Tβ* /2 (40) 

αkk̃2 k̂2 ≤ − αk(2νk − 1)k̂
2
2
/

2νk + αkνkk*2
2
/

2. (41) 

Substituting Eq. (40) and Eq. (41) into Eq. (39) yields 

V̇1 ≤ − k1s2 −
αβ
(
2νβ − 1

)

2νβ
β̃

T
β̃ −

αk(2νk − 1)
2νk

k̂
2
2 +

αβνβ

2
β*Tβ* +

αkνk

2
k*2

2

≤ − ψ1V1 +ψ2

(42) 

where 

Fig. 5. The retinal vein injection system with silicone phantom.

Fig. 6. A retinal vein injection process. (a) The lumen filled with blood without drug injected, (b) The lumen filled with green dyed drug, (c) The microscopic view of 
the lumen filled with blood, (d) The microscopic view of the lumen filled with drug. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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ψ1=min
{
2k1,αβ

(
2νβ − 1

)/
νβ,αk(2νk − 1)

/
νk
}
,ψ2=

αβνβ

2
β*Tβ* +

αkνk

2
k*2

2 .

Based on Eq. (42) and Lemma 1, we can conclude that s, β̃ and k̃ are 
bounded and converge to the compact set described as Eq. (43), and the finite 
time is given in Eq. (44)

Ωs :=
{

s
⃒
⃒
⃒|s| ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ψ2/ψ1(1 − θ)

√ }

Ωβ̃ :=
{

β̃
⃒
⃒
⃒‖β̃‖ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2Γψ2/ψ1(1 − θ)

√ }

Ωk̃0
:=
{

k̃0

⃒
⃒
⃒
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ψ2/ψ1(1 − θ)

√ }
(43) 

ts =
1

Ψ1θ
ln
(

V1(s(0), β̃(0), k̃0(0))
Ψ1(1 − θ)

Ψ2

)

. (44) 

Furthermore, we can prove that the attitude tracking error eQ converges to 
zero in a finite time ts when the sliding mode function s = 0. At the sliding 
surface s = 0, Eq. (14) can be rewritten in the form as 
{

ẋ1 = x2
ẋ2 = − λ1|x1|

γ1 sign(x1) − λ2|x2|
γ2 sign(x2)

(45) 

where x1 = eQ and x2 = ėQ. It can be proved that the system Eq. (45) is 
global finite-time stable (Zheng et al., 2014). From the system Eq. (45), 
there exists a time instance ts such that ëQ(t) = 0 for t ≥ ts, therefore, the first 
derivative of s in Eq. (14) is reduced to 

λ1|x1|
γ1 sign(x1)+ λ2|x2|

γ2 sign(x2)= 0. (46) 

According to Yang & Yang (2011), it can be inferred that Eq. (46) for the 
tracking error eQ(ts) can converge to zero in a finite time tr bounded by 

tr =
2

1 − γ1

(
λ2

λ1

)γ1+1
2γ1

|eQ(0)|
1− γ1

2 . (47) 

Hence, when eQ = 0 in Eq. (14), any initial condition eQ(0) converges to 
zero in a finite time t = ts + tr.

Theorem 2. Consider the system dynamics as Eq. (7) with the control law 
as Eq. (23). When the number of hidden neurons of SELM changes from Nh to 
Nh + 1 with growing phase, and the structure and parameters of the ASNTSM 
controller are adjusted according to Eq. (26), and Eq. (27). Then, the sta-
bility of the closed-loop system can be also guaranteed with model un-
certainties and disturbances.

Proof. Considering the hidden layer neurons with the growing phase, we 
define a Lyapunov function candidate as 

V2 =V1 +
1
2

(
fg − fo

)2
(48) 

where fg and fo are the outputs of the SELM after and before the growing 
process, respectively. Then differentiating with respect to time t, we can obtain 

V̇2 = V̇1 + fg − fo

= V̇1 +
∑Nh+1

i=1
hiβi −

∑Nh

i=1
hiβi

= V̇1 +

(

hgβg +
∑Nh

i=1
hiβi

)

−
∑Nh

i=1
hiβi.

(49) 

Substituting Eq. (27) into Eq. (49) yields 

V̇2 = V̇1 ≤ − ψ1V1 + ψ2. (50) 

Similarly, the finite time satisfies t = ts + tr. Combining with Eqs. (49)– 

Fig. 7. The experimental results for DFR control without simulated blood flow disturbance. (a) Comparison of set-point control results. (b) Comparison of control 
errors. (c) Comparison of control inputs.
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(51), Theorem 2 can be proved.

Theorem 3. Consider the system dynamics as Eq. (7) with the control law 
as Eq. (23). When the number of hidden neurons changes from Nh to Nh − 1 
based on the pruning phase, and the structure and parameters of the ASNTSM 
controller are adjusted according to Eq. (30) and Eq. (31). Then, the stability 
of the closed-loop system also can be guaranteed with model uncertainties 
and disturbances.

Proof. Considering the hidden layer neurons with the pruning phase, we 
define a Lyapunov function candidate as 

V3 =V1 +
1
2

(
fp − fo

)2
(51) 

where fp and fo are the outputs of the SELM after and before the pruning 
process, respectively. Then differentiating with respect to time t, we can obtain 

V̇3 = V̇1 + fp − fo

= V̇1 +

(
∑Nh − 2

i=1,i∕=s
hiβi + hsβʹ

s

)

−

(
∑Nh − 2

i=1,i∕=j,i∕=s
hiβi + hjβj + hsβs

)

= V̇1 +

(
∑Nh − 2

i=1,i∕=s
hiβi + hs

(

βs + βj
hj

hs

))

−

(
∑Nh − 2

i=1,i∕=j,i∕=s
hiβi + hjβj + hsβs

)

.

(52) 

Substituting Eq. (31) into Eq. (52) yields 

V̇3 = V̇1 ≤ − ψ1V1 + ψ2. (53) 

Similarly, the finite time satisfies t = ts + tr. Combining with Eqs. (51)– 

Fig. 8. The performance for DFR control without simulated blood flow disturbance. (a) Transient time. (b) Average steady-state error. (c) Standard deviation of 
steady-state error. (d) Control chattering effect.

Table 1 
The performance improvements of ASNTSM without blood flow disturbance.

Desired 
flow rate 
(μL/min)

Method Improvements (%)

Transient 
time

Average 
steady- 
state error

Standard 
deviation of 
steady-state 
error

Control 
chattering 
effect

60 CSM 46.88 39.14 52.68 55.56
FNTSM 25.00 32.33 18.56 42.86
DFNTSM 3.77 13.74 53.14 33.33

80 CSM 27.59 38.21 47.89 30.77
FNTSM 20.75 54.35 55.61 10.00
DFNTSM 22.22 18.28 53.30 10.00

100 CSM 69.01 34.72 45.23 22.22
FNTSM 51.11 6.00 12.58 6.67
DFNTSM 47.62 7.84 34.65 6.67

Average CSM 47.83 37.36 48.60 36.18
FNTSM 32.29 30.89 28.92 19.84
DFNTSM 24.54 13.29 47.03 16.67

Table 2 
The number of steady-state hidden neurons without blood flow disturbance.

Desired flow rate (μL/min) 60 80 100

Number of steady-state hidden neurons 6 6 7
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(53), Theorem 3 can be proved. Therefore, the proposed SELM demonstrates 
stability even in the presence of uncertainties and disturbances. Furthermore, 
the tracking error converges to the neighbor of zero in finite-time with 
ASNTSM controller.

Remark 8. The combination of Theorem 1, Theorem 2, and Theorem 3
demonstrates that the proposed self-evolving mechanism does not impact 
stability during the control process.

Remark 9. Avoiding excessive growth or pruning of the ELM is of signifi-
cant practical importance. Based on the growth mechanism and Theorem 1, 
the tracking error can converge to zero within finite time as the system reaches 
steady-state. Select lower values for ε0 and ε1 can achieve finite number of 
hidden neurons. In practical applications, infinite growth is unlikely to occur, 
as it would require a large and continuously increasing MAE. This can be 
effectively mitigated through appropriate selection of ε0 and ε1. Excessive 
pruning can only occur when the MAE is small and continuously decreasing, 
and the third condition in Eq. (29) is satisfied. In theory, when the error 
converges to zero, the pruning mechanism may be triggered in each ΔT 
period. However, in practice, the third condition of Eq. (29) is difficult to 
meet, as it requires the importance to be below an adaptive threshold (outside 
the high-confidence interval). Moreover, if the pruning conditions are met and 
neurons are reduced, it indicates that a large hidden layer is unnecessary. 
This is also an advantage of the pruning mechanism, which can adaptively 
reduce computational complexity while maintaining desired precision. To 
achieve satisfactory structural adjustment, the selection guidelines for ε0, ε1, 
and kΞ are further discussed in Section 3.4.3.

3.4. Guidelines for parameters selection

In the practical implementation of retinal vein injection, the 

precision of DFR control is influenced by factors such as noise from the 
flow rate sensor, variations in the retinal vein environment, and the 
friction of the syringe piston. The ASNTSM controller, when combined 
with appropriate parameter selection, has the potential to mitigate the 
aforementioned effects and enhance control performance.

3.4.1. Selection of γ1, λ1, λ2, k1
The parameter γ1 controls the set-point error of the DFR in the sliding 

mode variable s. A smaller γ1 can enhance the responsiveness of the 
control system, while a larger γ1 may induce chattering. The parameters 
λ1 and λ2 represent the gains of the integral term in the sliding mode 
surface. Thanks to the finite-time sliding mode surface, these parameters 
primarily influence the convergence speed according to Eq. (47). A 
larger λ1 decreases the convergence time of the sliding mode variable s, 
although it may also intensify chattering. Conversely, a smaller λ2 ac-
celerates convergence while reducing overshoot magnitude. Meanwhile, 
a larger k1 expedites convergence but may lead to excessive chattering. 
Based on the above analysis, we first set γ1 = 0.6 to enhance the 
response speed. Next, we set λ1 = 25 to further ensure a fast conver-
gence rate. The values of λ2 = 0.1 and k1 = 2.5 are selected to minimize 
steady-state error while avoiding chattering effects.

3.4.2. Selection of Γ,αk, αβ

For SELM, a smaller value of Γ enhances the learning speed, but a 
larger Γ may hinder the convergence of the weights. Meanwhile, a 
smaller αβ helps mitigate overestimation of the output weights, whereas 
a larger αβ can lead to unstable updates. Based on these considerations, 
we select Γ = 0.001 and αβ = 0.1.

For adaptive gain, the parameter αk > 0 plays a crucial role in 

Fig. 9. The experimental results for DFR control with 20 μL/min blood flow rate. (a) Comparison of set-point control results. (b) Comparison of control errors. (c) 
Comparison of control inputs.

B. Hu et al.                                                                                                                                                                                                                                       Engineering Applications of Artiϧcial Intelligence 152 (2025) 110789 

10 



determining the estimation performance. A lower value of αk allows the 
adaptive gain to increase more rapidly, which can better compensate for 
disturbances. However, a larger switching gain may also induce chat-

tering. Conversely, a larger value of αk can avoid excessive chattering, 
but the rapidly decreasing gain may struggle to address disturbances 
effectively, thereby sacrificing control accuracy. Therefore, in the 
presence of complex disturbances, it is necessary to design a lower αk to 
prevent underestimation. In contrast, for constant disturbances, a larger 
αk is more suitable to avoid overestimation. Thus, αk must be carefully 
selected to balance high precision and reduced chattering. For the 
retinal vein injection task, the adaptive gain is primarily designed to 
overcome the estimation error of the ELM. Based on practical perfor-
mance, αk = 0.1 is selected to achieve high-precision DFR control while 
simultaneously reducing the chattering effect.

3.4.3. Selection of ΔT, ε0, ε1, kΞ

The self-evolving mechanism is driven by control performance, with 
the tracking error and its increment serving as the core criteria for 
determining the structure updating. the MAE is utilized during the 
trigger period as the primary rule for adjusting hidden neurons and 
employ the k − σ rule to achieve neuron pruning.

The parameter ΔT determines the time scale for calculating the MAE. 
A larger ΔT can reduce the fluctuation of the MAE, thereby mitigating 
the excessive growth of neurons in the SELM. However, it may also cause 
the structural changes of neurons to lag behind the error fluctuations, 
potentially leading to a mismatch.

The parameter ε0 is used to visually determine whether the MAE 
exceeds the acceptable range. When the MAE is larger than ε0, it in-
dicates that the number of neurons need to be increased. Conversely, if 
the MAE is within the acceptable range, neuron growth is deemed un-
necessary. A small value of ε0 makes growth easier, but this also in-
creases the risk of excessive growth. As ε0 is larger, the growth 

Fig. 10. The performance for DFR control with simulated blood flow disturbance. (a) Transient time. (b) Average steady-state error. (c) Standard deviation of steady- 
state error. (d) Control chattering effect.

Table 3 
The performance improvements of ASNTSM with blood flow disturbance.

Blood 
flow rate 
(μL/min)

Method Improvements (%)

Transient 
time

Average 
steady- 
state error

Standard 
deviation of 
steady-state 
error

Control 
chattering 
effect

10 CSM 38.83 41.25 44.86 28.57
FNTSM 38.17 27.75 39.18 16.67
DFNTSM 37.16 12.21 36.56 2.78

20 CSM 42.49 41.54 49.80 26.53
FNTSM 32.72 34.84 30.98 14.29
DFNTSM 38.67 8.09 38.05 2.70

30 CSM 38.80 45.57 48.91 32.73
FNTSM 23.60 44.30 48.54 15.91
DFNTSM 38.81 11.70 37.22 5.13

Average CSM 40.40 42.79 47.86 29.28
FNTSM 31.50 35.63 39.57 15.62
DFNTSM 38.21 10.67 37.28 3.54

Table 4 
The number of steady-state hidden neurons with blood flow disturbance.

Blood flow disturbance (μL/min) 10 20 30

Number of steady-state hidden neurons 6 7 8
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mechanism becomes less sensitive to errors. The value of ε0 must bal-
ance control precision with the size of the structure. In scenarios 
requiring high precision, a smaller ε0 is necessary to ensure sufficient 
estimation capability. In other cases, ε0 can be appropriately increased. 
It is recommended that the desired error level in experiments be used as 
a basis for selection. For the retinal vein injection task, we set ε0 = 5 to 
achieve appropriate growth capability under disturbances.

The parameter ε1 determines whether the increment of MAE exceeds 
the acceptable range. When ε1 is larger, the growth mechanism becomes 
less sensitive to the MAE increment. Conversely, a smaller value makes 
the growth mechanism more sensitive to MAE increments. The value of 
ε1 should account for the volatility of the MAE. In the presence of strong 
fluctuations, a smaller ε1 can be set to enhance growth ability. In 
contrast, when fluctuations are smoother, ε1 can be increased appro-
priately. It is suggested that the standard deviation of error can be 
considered as a basis for selection in practical application. For the retinal 
vein injection task, we set ε1 = 2.5 to ensure that the adjustment is not 
overly sensitive to fluctuations.

The role of kΞ is to determine whether neurons need to be pruned. 
This decision is based on the neuron importance as defined by Eq. (28). 
The k − σ rule is used to investigate whether there are neurons with 
lower information processing capabilities. For example, (μΞ ±σΞ) defines 
a region that includes 68 % of all data points as kΞ = 1. When kΞ = 4, 
the interval (μΞ ±4σΞ) contains 99.99 % of the data points (Aradhya 
et al., 2022). The larger the value of kΞ, the more difficult it is for 
neurons to be pruned. Conversely, smaller values of kΞ make neurons 
easier to prune. In scenarios with complex disturbances, more neurons 
are needed for accurate estimation, and a larger kΞ can be considered. In 
contrast, for scenarios with constant disturbances where excessive 
neuron growth needs to be inhibited, a smaller kΞ is appropriate. Here, 
we select kΞ = 2 (contains 95.45 % of the data points) to achieve an 
acceptable pruning process. This choice ensures sufficient estimation 
capability to cope with the disturbances in the retinal vein injection 
system. 

Remark 10. For practitioners, balancing fast convergence with the 
suppression of the chattering phenomenon is crucial. The sliding mode 
parameters (such as λ1 and λ2) primarily influence the convergence 
speed, while the switching gain parameter αk mainly affects the chat-
tering phenomenon. To achieve a balance between convergence speed 
and chattering suppression, it is recommended to first select the pa-
rameters related to the sliding mode surface. Specifically, choosing a 
larger λ1 and a smaller λ2 can achieve faster convergence while avoiding 
obvious chattering. These parameters can then be gradually adjusted as 
needed. Subsequently, the switching gain parameter αk should be fine- 
tuned to reduce gain overestimation and minimize chattering adap-
tively. Currently, it is challenging to theoretically determine parameters 
that can simultaneously achieve fast convergence and minimal chat-
tering. However, by combining the above guidelines with experimental 
trial-and-error, practitioners can iteratively adjust the parameters to 

find an optimal balance between convergence speed and chattering 
suppression.

Remark 11. The reduction of chattering can also be achieved through 
intelligent optimization methods, including particle swarm optimization 
(Gonzales-Zurita et al., 2023), genetic algorithm (Song et al., 2022). 
These methods are expected to reduce chattering preserving a faster 
response speed. By designing a fitness function that incorporates both 
convergence speed and chattering indicators, the optimized controller 
parameters can be iteratively refined. Importantly, this approach can 
significantly reduce the complexity associated with manual parameter 
selection. In future studies, it is feasible to adopt these intelligent opti-
mization methods to maintain better response speed while minimizing 
chattering.

4. Experiment

4.1. Platform description

The overall retinal vein injection system is shown as Fig. 5. Initially, 
a piezo-actuated stage (Scanner65-x. SP-NK, MultiFields Tech) with a 
maximum displacement of 300 μm, is employed to achieve the axial 
puncture of the injection needle. The puncture and injection state can be 
observed within the microscope (MSD204, Murzider) field of view when 
illuminated by the light source (BG-II, WSoptics).

To achieve precise control of the DFR, a liquid-driven injection sys-
tem has been developed (Xu et al., 2024). Fig. 5 illustrates the equip-
ment layout of the retinal vein injection system, which includes the 
injection device (for silicone oil injection), the syringe (for drug injec-
tion), and the flow sensor (for real-time feedback). The injection device, 
based on a brushless micro servo electric cylinder (BLACF30-C112, 
INSPIRE-ROBOTS), is connected to the syringe via a pressure pipeline. 
The syringe is connected to the flow sensor (SENSIRION-SLI-1000, 
Fluidclab) through a pipeline, and the pipeline is connected to the 
microneedle. In this system, the syringe is filled with the drug, while the 
back end of the syringe, the pressure pipeline, and the injection device 
are filled with silicone oil. During injection, the driving mechanism 
pushes the piston of the injection device forward at a speed (control 
law), applying pressure to the silicone oil, which in turn pushes the 
syringe piston to inject the drug. This liquid-driven mechanism signifi-
cantly reduces the load on the retinal surgery equipment. Another same 
device (simulated blood flow device in Fig. 5) serves to mimic blood flow 
for filling the vein lumen. The BD syringe has a total capacity of 1 mL, 
and the outer diameter of the injection tip measures 100 μm (41G, 
INCYTO).

A customized silicone phantom with dimensions of 15 mm × 15 mm 
× 7.5 mm is produced to simulate retinal veins (Shenzhen Phenix Tech). 
The silicone phantom contained cavities with diameters of 120 μm, 150 
μm and 180 μm to simulate retinal veins. The thickness of the vascular 
cavity from the silicone upper surface is 20 μm. The injection water is a 

Fig. 11. The hidden neurons of ASNTSM. (a) 10 μL/min blood flow rate. (b) 20 μL/min blood flow rate. (c) 30 μL/min blood flow rate.
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green dyed drug (Indocyanine Green).

4.2. Experimental setup

The controller of the injection system is programmed within the 
LABVIEW environment on the host computer. The sampling interval is 
40ms. Based on the dynamics model of the injection system as described 
by Eq. (7), the system parameters are identified by the system identifi-
cation toolbox in MATLAB: an = 2.6, bn = 6, cn = 46.79. In this paper, 
the conventional SM (CSM) controller (Utkin et al., 2020), the fast non- 
singular TSM (FNTSM) controller (Lian et al., 2021), and the 
disturbance-observer-based FNTSM (DFNTSM) controller are used for 
comparison experiments. For the CSM controller, the control law is 
given as: 

uCSM =
1
cn

(anẋ+ bnx − Cė − k1σ − k2sgn(σ)) (54) 

where the sliding mode surface of the CSM controller is selected as σ =

ė+ Ce;
For the FNTSM controller, the control law is given as: 

uFNTSM=
1
cn
(anx2+bnx1 − λ1|eQ|

γ1 sign(eQ)− λ2|ėQ|
γ2 sign(ėQ)− k1s− k2sgn(s))

(55) 

where the sliding mode surface of the FNTSM controller is as same as Eq. 
(14). For the DFNTSM controller, the control law is given as: 

uDFNTSM =
1
cn

(anx2 + bnx1 − d̂t − λ1|eQ|
γ1 sign(eQ)

− λ2|ėQ|
γ2 sign(ėQ) − k1s − k2sgn(s))

(56) 

The d̂t is estimated by the disturbance observer, a widely used 
observer in engineering applications to enhance system robustness 
(Ding et al., 2020): 
{

ṗ = − Lg2p − L(g2Lx + f + g1u)
d̂t = p + Lx

(57) 

where x = [x1, x2]
T
= [Q2, Q̇2]

T , f = [x2, − anx2 − bnx1]
T , g1 = [0, cn]

T, 
g2 = [0,1]T L > 0 is the observer gain. p denotes the internal state of the 
observer. The parameter selection for ASNTSM is described in detail in 
Section III. The parameters setting for the CSM controller are: C = 2.5, 
k1 = 2.5, k2 = 5. The parameters setting for the FNTSM controller are: 
γ1 = 0.6,λ1 = 25,λ2 = 0.1,k1 = 2.5,k2 = 5. The parameters setting for 
the DFNTSM controller are: k1 = 2.5, k2 = 5, L = [8, 0.1]. The four 
sliding mode controllers adopt hyperbolic tangent functions instead of 
sign functions to smooth control signal. The sigmoid activation function 
is utilized in the experiments, ensuring the nonlinear estimation capa-
bility of the SELM for handling disturbances.

In this paper, the transient time, average steady-state error, standard 
deviation of steady-state error and control chattering effect are used to 
quantitatively analyze the control performance. The transient time is 
defined as the time interval from the beginning of injection to the arrival 
of steady state. The steady state is defined as the point where the DFR 
tracking error is less than 5 % of the desired value. The shorter the 
transient time, the faster the response of the retinal vein injection sys-
tem. The average steady-state error and the standard deviation of 
steady-state error describe the control accuracy and its stability. The 
control chattering effect (CCE) is defined as the average absolute value 
of the control input difference in adjacent control periods: 

CCE=
1
T
∑T

i=1
|u(kc) − u(kc − 1)| (58) 

where |⋅| represents the absolute value, T represents the total control 
period, and kc represents the kc-th control period.

The needle, affixed to the piezo-actuated stage, pierces the wall of 
the retinal vein to enable continuous infusion of the green dyed drug. An 
example of drug injection process is provided. As illustrated in Fig. 6, the 
fluid inside the lumen of the silicone phantom is observable both before 
and after a successful injection. The lumen of the retinal vein is suc-
cessfully flushed with green dyed drug.

4.3. Experiment case 1: DFR tracking without simulated blood flow 
disturbance

In this case, a green dyed drug was injected containing static simu-
lated blood. Three desired DFR set-points are considered to compare the 
performance of the four sliding mode controllers, which are 60 μL/min, 
80 μL/min, and 100 μL/min.

Fig. 7 shows the experimental results of four SM controllers tracking 
the desired flow rate of 60 μL/min, the detailed responses of the control 
law are shown Fig. 7(c). Fig. 8 shows the detailed performance of four 
SM controllers tracking three set-points. Tables 1 and 2 shows the 
improvement performance of four SM controllers tracking three set- 
points and number of steady-state hidden neurons, respectively.

In terms of convergence speed, it can be intuitively seen from Fig. 7
(a) that the ASNTSM controller can converge to the steady-state faster 
than the other three controllers. The ASNTSM controller has less over-
shoot, reducing the risk of retinal tissue damage during RVC. Based on 
Table 1, for the three desired flow rate, the transient time of the ASNTSM 
controller is on average 47.83 % and 32.29 % faster than the CSM, 
FNTSM, and DFNTSM. The results based on Fig. 8(a) and Table 1 show 
that the finite-time terminal sliding mode surface can improve the 
response time, and the SELM further improves the response speed. The 
ASNTSM controller is more effective than other controllers in reducing 
transient processes with higher surgical efficiency.

According to Fig. 8(b) and Table 1, the average steady-state error of 
the ASNTSM controller is on average 37.36 %, 30.89 %, and 13.29 % 
accurate than the other three controllers.The disturbance observer can 
compensate for disturbances during the start-up phase, resulting in 
improved average steady-state error compared to both CSM and FNTSM 
(average improvement of 27.65 % and 25.1 %). However, due to the 
uncertainties associated with syringe piston, the improvement in steady- 
state performance relying on the model-based disturbance observer is 
limited. Thanks to the combination of TSM and SELM, the control pre-
cision of the ASNTSM is significantly better than other methods. Based 
on Table 1, the standard deviation of steady-state error of the ASNTSM 
controller is on average 48.6 %, 28.92 %, and 47.03 % stable than the 
other three controllers. Thus, in the steady-state phase, the ASNTSM 
controller has higher tracking precision and more stable DFR.

Compared with CSM, FNTSM, and DFNTSM, the control chattering 
effect of ASNTSM is reduced by 36.18 %, 19.84 %, and 16.67 % 
respectively. This phenomenon shows that the SELM compensation re-
duces the overestimation of the switching gain in ASNTSM, thus 
reducing the chattering effect. In addition, it can be seen from Table 2
that the self-evolving mechanism enables ELM to automatically deter-
mine the number of hidden neurons without manually experience. In 
summary, ASNTSM controller can achieve faster convergence speed, 
higher control accuracy, more stable performance and less control effect 
without simulated blood flow disturbance.

4.4. Experiment case 2: DFR tracking with simulated blood flow 
disturbance

The blood flow within the retinal vein has the potential to disrupt the 
consistent infusion of the drug. In the experiment, the variable of 
simulated blood flow rate is set at 10 μL/min, 20 μL/min, and 30 μL/min 
to evaluate the control performance of the proposed method (Takahashi 
et al., 2019). To verify the performance of the ASNTSM under simulated 
blood flow disturbance, the DFR set-point with step change can be 
described as follows. 
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Qd(t)=

⎧
⎨

⎩

60μL/min, t ≤ 10s
100μL/min, 10s < t ≤ 20s
60μL/min, 20s < t ≤ 30s

(59) 

In addition, three different retinal vein diameters are used for each 
simulated blood flow experiment, and the control result is an average 
value under three diameters. Fig. 9 shows the experimental results of 
three SM controllers tracking the variant set-point, the detailed re-
sponses of the control law are shown Fig. 9(c). Fig. 10 shows the detailed 
performance of four SM controllers with variant set-points. Table 3
shows the performance improvement of four SM controllers under 
simulated blood flow disturbance.

As shown in Fig. 9(a), the ASNTSM controller has the most effective 
overshoot suppression in the start-up phase compared to the other three 
SM controllers. Based on Fig. 10(b) and Table 3, the response capability 
of ASNTSM is also significantly improved, which is not only the selection 
of terminal sliding mode surface, but also thanks to the addition of 
SELM, effective NN compensation finally improves the response speed of 
the ASNTSM. This gives ASNTSM a shorter transient time than FNTSM 
and DFNTSM, further explaining the need for the framework with TSM 
and SELM.

From the perspective of control precision, the average steady-state 
error of ASNTSM is reduced by 42.79 %, 35.63 %, and 10.67 % 
compared with CSM, FNTSM, and DFNTSM controllers. The CSM and 
FNTSM controllers have limited ability to overcome the unknown 
disturbance, so the two controllers cannot accurately track the desired 
DFR with blood flow disturbance. DFNTSM has the capability of 
disturbance compensation based on system dynamics. Faced with 
increased blood flow disturbances, DFNTSM can maintain a stable 
average steady-state error (from 1.72 μL/min to 1.88 μL/min). However, 
when confronted with complex disturbances that combine blood flow 
and piston uncertainties, the accuracy improvement of DFNTSM is 
insufficient. The ASNTSM controller based on SELM compensation can 
overcome the disturbance without prior knowledge, thus ensuring the 
best DFR tracking precision. In the face of complex disturbance, 
ASNTSM has less steady-error fluctuation than other controllers, which 
is beneficial for ASNTSM to be applied in more complex clinical sce-
narios. Although the blood flow disturbance makes the controllers more 
chattering, the ASNTSM still has a 29.28 %, 15.62 %, and 3.54 % 
reduction compared to other controllers, which has positive implica-
tions for reducing the risk of instability and mechanical damage to the 
retinal vein injection system.

As shown in Fig. 10(b) and (c), The average steady-state error of 
ASNTSM remained stable (from 1.51 μL/min to 1.66 μL/min) as the 
blood flow disturbance increased (from 10 μL/min to 30 μL/min), but 
increased for both CSM (from 2.57 μL/min to 3.05 μL/min), FNTSM 
(from 2.09 μL/min to 2.98 μL/min), and DFNTSM (from 1.72 μL/min to 
1.88 μL/min). Similarly, the standard deviation of steady-state error for 
ASNTSM remained stable (from 1.18 μL/min to 1.4 μL/min), but 
increased for both CSM (from 2.14 μL/min to 2.74 μL/min), FNTSM 
(from 1.94 μL/min to 2.73 μL/min), and DFNTSM (from 1.86 μL/min to 
2.23 μL/min). These results demonstrate the robustness of the ASNTSM, 
which benefits from the disturbance compensation mechanism of SELM 
with satisfactory approximation capability.

The designed self-evolving mechanism also circumvents the need to 
determine the hidden layer structure, resulting in a more compact 
structure and improved application efficiency of the controller. The 
numbers of hidden neurons in Table 4 illustrate the self-evolving results 
of the experiments. Fig. 11 illustrates the specific growth and pruning 
processes of the SELM. The hidden neurons of SELM remained stable 
after growth and pruning. The self-evolving mechanism imposes a more 
stringent condition for pruning compared to that for growth. This helps 
to mitigate the excessive pruning of neurons in the hidden layer to some 
extent. Thanks to the approximate ability of the SELM estimator, the 
disturbance of the injection system can be compensated, and the control 
performance of ASNTSM is improved.

Overall, the ASNTS controller demonstrates the capability to with-
stand the disturbance associated with the piston motion during the 
initial injection, as well as to overcome the disturbance related to the 
blood flow of retinal vein. Simultaneously, its adaptive ability also 
confers superior control performance compared to the sliding mode 
controller with fixed parameters. The design of SELM allows for flexible 
adjustment of the structure while maintaining satisfactory performance. 
Consequently, the ASNTSM design is well-suited for the implementation 
of retinal vein injection tasks. The experimental results demonstrating 
better tracking accuracy, fast response, and strong robustness.

5. Conclusion

This paper proposes an ASNTSM control strategy to track the desired 
DFR. To ensure the finite-time tracking performance of the desired DFR, 
an integral terminal sliding mode control law is designed. To estimate 
the unknown disturbance from syringe piston friction and the retinal 
environment, a self-evolving ELM is designed to compensate. The 
theoretical analysis proved the finite-time stability of the ASNTSM with 
self-evolving mechanism. The experimental results show that the 
ASNTSM controller has better tracking speed, accuracy and robustness 
under variant blood flow disturbances. It is verified that the developed 
retinal vein injection control system is suitable for clinical RVC surgery.

For future work, it is expected to plan the desired DFR trajectory 
based on the characteristics of drug-vein interaction, thereby optimize 
the injection process while reducing the damage on retinal tissue. The 
application of the desired DFR trajectory and control algorithm is ex-
pected further verified in the porcine eyes in vitro.
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