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Based on Polar Body Orientation Prediction
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Abstract—Three-dimensional rotation of the biological cell
is essential for localizing subcellular structure in various cell
manipulations. However, visual detection errors of the subcellular
structure affect the rotation performance in automatic cell
manipulations. In this paper, we enhance the robustness of out-
of-plane rotation through visual detection evaluation. At first,
we developed a kinematic model and simulation environment for
cell rotation. We then predicted the presence and reliability of
polar body detection using a posteriori probability analysis from
4 million simulations. We finally presented a robust out-of-plane
rotation strategy based on polar body orientation prediction. Both
simulation and experimental results with porcine oocytes demon-
strated the efficiency and robustness of the proposed cell rotation
method across various abnormal situations, improving the success
rate of cell rotation. This work contributes a universal framework
applicable to other vision-based cell rotation problems, offering
a significant advancement in the field of cell manipulation.

Index Terms—Biological cell manipulation, subcellular struc-
ture localization, cell rotation, polar body orientation prediction,
visual detection evaluation.

I. INTRODUCTION

SUB-STRUCTURES within a cell have different functions,
and when integrated, they form a complete cell. Three-

dimensional rotation of the biological cell is essential for
subcellular structure localization in various cell manipulations,
such as intracytoplasmic sperm injection (ICSI) [1], [2], preim-
plantation genetic screening (PGS) [3], [4], preimplantation
genetic diagnosis (PGD) [5], [6], somatic cell nuclear transfer
(SCNT) [7], [8], and polar body genome transfer [9], [10]. In
these cell surgery tasks, the specific subcellular structures are
required to locate an appropriate orientation using noninvasive
cell rotation. Take the polar body as an example, which is a
kind of important subcellular structure and contains a copy of
the genetic information of an oocyte or embryo. It is situated
between the cytoplasm and zona pellucida inside the cell, as
shown in Fig. 1. In the case of ICSI, the polar body should
be rotated to the 9 or 12 o’clock position to avoid polar
body damage; conversely, for SCNT, the polar body needs
to be positioned at the 2 or 4 o’clock position to facilitate
enucleation.
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Fig. 1. Polar body of an oocyte/embryo. (a) 3D view of a cell with a polar
body. The polar body is situated between the cytoplasm and zona pellucida
inside the oocyte/embryo. The polar body should be rotated to the desired
orientation for various cell surgery tasks. (b) The projection of the cell in the
image plane. The polar body is visible when it is positioned near the image
plane. (c) Porcine oocyte with the polar body visible in the image plane.
(d) Porcine oocyte with the polar body outside the image plane. (e) Porcine
oocyte without a polar body. Scale bar: 50µm

In the last two decades, cell rotation techniques have gained
much attention. Cell rotation approaches can be divided into
two main categories: physical contact approaches and non-
contact approaches. In physical contact approaches, cells are
immobilized using either a holding pipette [11]–[13] or an
in-house developed holding stage [14], [15] . Orientation is
achieved through friction between the cell and the injection
pipette [16]–[18]. Some rotational or translational devices
were also employed to rotate the cell by applying friction
between the cell and the platform [19], [20]. Non-contact
approaches include electric field-driven [21], [22], magnetic
field-driven [23], [24], microfluidic flow [25], [26], optical
tweezer [27], [28], acoustic field-driven [29], [30], etc. Ref.
[31] has summarized the existing methods for cell orientation
control. At present, both types of approaches have achieved
cell rotation control with high precision and efficiency. Typ-
ically, the visual detection of the subcellular structure served
as the control feedback to determine whether the rotation is
complete.

As a kind of representative subcellular structure, polar body
detection has been a focus of concern. Traditional image
processing methods, such as thresholding segmentation, image
texture detection, and contour curvature analysis [17], [20],
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have been used to identify the polar body. While these methods
are easily integrated into the micromanipulation system, their
detection accuracy is significantly affected by the shape, size,
and focus of the polar body, which can lead to inaccuracies and
inefficiencies in certain conditions. Recently, there has been a
shift towards more advanced object detection methods based
on machine learning [32], [33] and deep learning [12], [34],
[35] for detecting the polar body. These methods have shown
effective and robust detection results, overcoming some of the
limitations of traditional approaches. At the same time, it may
require more computational resources and sophisticated train-
ing data, which could be a limitation in resource-constrained
environments. Notably, in previous studies, we have achieved
online detection of polar bodies from different animals with
an average accuracy of 98 %, fulfilling the requirements for
automatic cell rotation [36].

However, there are two primary issues with the aforemen-
tioned detection algorithms when applied to cell rotation.
First, errors in visual detection have a significant impact on
subsequent cell manipulations. The detection errors typically
fall into two categories: false negative (FN), where the polar
body present in the image is not detected; and false positive
(FP), where the polar body is incorrectly identified in the
image without a visible polar body. The FN case prolongs cell
rotation time, potentially affecting cell viability. Conversely, in
the FP case, it is mistakenly assumed that cell rotation has been
completed and the subsequent procedure would be performed,
ultimately resulting in the failure of cell manipulations.

Second, due to the imaging characteristics of the optical
microscope, the polar body can only be visually recognized
when it is near the image plane (Fig. 1(a-c)). Otherwise, it
becomes defocused, merges with the cytoplasm, and becomes
unobservable (Fig. 1(d)). The detection algorithms, and even
human observers, struggle to differentiate between the absence
of a polar body and a polar body that is out of the image plane
(Fig. 1(d) and (e)). Regrettably, abnormal cellular development
leads to some oocytes/embryos not having a polar body [37].
Due to the challenge of the target’s initial position being
unknown, robotic cell orientation techniques often involve an
iterative process: the cell is continually rotated with a fixed or
random rotational angle until the polar body is identified or it
is concluded that the cell lacks a polar body. The process of
cell rotation to bring the polar body into view is called ”out-of-
plane rotation”. Current methods can only repeatedly rotate the
cell to confirm the absence of a polar body during out-of-plane
rotation, which significantly increases the operation time.

Out-of-plane rotation faces challenges due to the lack of ef-
fective visual feedback. Inaccuracy in visual detection greatly
affects the reliability of cell manipulation. So far, few robotic
or automatic cell manipulation methods have concentrated on
evaluating the effectiveness of visual detection to enhance
system robustness. In this study, we analyzed the patterns
of polar body detection during cell rotation by combining
a kinematic model and simulation of out-of-plane rotation,
thereby obtaining the relationship between the rotational angle
of the cell and the appearance orientation of the polar body.
Utilizing this understanding, we designed a robust cell rotation
strategy based on polar body orientation prediction.

The main contributions of this study are concluded as
follows:

1) We established a theoretical kinematics model and devel-
oped a kinematic simulation environment for cell rotation.
Using this model and environment, we could calculate the
a posteriori probability of polar body appearance with the
rotational angle of the cell and the orientation of the polar
body.

2) We conducted millions of simulations and fulfilled the
presence prediction of the polar body and reliability
prediction for polar body detection based on a posteriori
probability analysis of the simulation results.

3) We designed an out-of-plane rotation strategy based on
polar body orientation prediction and validated the pro-
posed strategy through the robotic rotation of porcine
oocytes. The simulation and experimental results demon-
strate the efficiency and robustness of the proposed
method across various abnormal situations.

II. KINEMATIC MODELING AND SIMULATION

In cell manipulation, cells are usually immobilized and
rotated using a holding pipette and an injection pipette re-
spectively. The technologies reported in the literature have
demonstrated high accuracy of cell rotation. Consequently,
if the current position of the polar body and the rotation
parameters are known, the 3D position of the polar body after
cell rotation can be calculated. Building on this, we established
a kinematic model for cell rotation and discussed the factors
that affect the orientation of the polar body in the image.

A. Kinematic modeling for cell rotation

In the kinematic model, the cell, the cytoplasm, and the
polar body are modeled as spheres for simplicity, as the
interactions between the micropipette and the cell surface are
not considered. The origin of the local coordinate system is
set to the center of the cell. Fig. 2(a) shows the spheres of
the cytoplasm (the green solid line) and the polar body (the
small blue solid sphere). The radii of the cytoplasm and the
polar body are designated as Rcy and Rpb, respectively. In Fig.
2(a), the blue-spotted sphere represents the 3D position of the
polar body center. The polar body is constrained to move on
this sphere, which has a radius of C = Rcy +Rpb. The polar
body inclination angle φ is defined as the angle between the
line connecting the polar body center to the origin and the
X − Y plane, with a range of φ ∈ (−180◦, 180◦]. Supposing
that the polar body distributes uniformly over the surface of
the cytoplasm. Let the 3D coordinate of the polar body center
be noted as (x, y, z), then we have:

x2 + y2 + z2 = C2, (1)

The inclination angle of the polar body is expressed as:

φ =

{
arccos(

√
x2 + y2/C) z ≥ 0

− arccos(
√
x2 + y2/C) z < 0

, (2)

The cytoplasm and polar body are projected onto the X−Y
plane, i.e. the image plane, as shown in Fig. 2(b). The distance
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Fig. 2. The kinematic model for cell rotation. (a) 3D model of the cell. The
origin of the local coordinate system is set to the center of the cell. The radii
of the cytoplasm and the polar body are designated as Rcy and Rpb. (b)
The projection of the cell model in the X − Y plane (the image plane). The
distance from the center of the polar body to the origin in X − Y plane is
designated as dcp.

from the center of the polar body to the origin in the X − Y
plane is designated as dcp =

√
x2 + y2. The orientation of

the polar body ϕ is defined as the angle between the line
connecting the two centers and the positive direction of the
X-axis, with a range of ϕ ∈ (−180◦, 180◦]:

ϕ =

{
arccos(x/dcp) y ≥ 0
− arccos(x/dcp) y < 0

, (3)

Since the cytoplasm is not transparent, the polar body is
considered to be visible in the image only when a small part
or none of the polar body overlaps with the cytoplasm. Define
parameter D as the minimum distance from the polar body
center to the origin in the X − Y plane when the polar body
is recognizable, as shown in the purple dotted circle in Fig.
2(b). The parameter D is determined by the size of the polar
body, Rcy −Rpb < D ≤ Rcy +Rpb. The value of D will be
set according to the experimental observations.

If distance dcp < D, the polar body is occluded by the
cytoplasm. At this time, the cell needs to be rotated to make
the polar body recognizable. Here, we have:

|z| =
√
C2 − dcp2 >

√
C2 −D2, (4)

In other words, the polar body is unrecognizable when it is
situated within the upper or lower spherical shells, as shown
in Fig. 2(a).

Assuming that the cell can be rotated around any axis
through the origin, we define the rotation axis as K̂ =
[kx ky kz]

T . If the polar body center initially lies at Point P0 =[
x0 y0 z0

]T
, after the cell rotates by an angle θ around

the axis K̂, the center will move to Point P =
[
x y z

]T
:

[
x y z

]T
= kxkxvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ kykyvθ + cθ kykzvθ − kxsθ
kxkzvθ − kysθ kykzvθ + kxsθ kzkzvθ + cθ

 [x0 y0 z0 ]T
(5)

where, cθ = cos θ, sθ = sin θ, vθ = 1− cos θ.
Since rotating the cell around the Z-axis does not alter

the overlap area between the polar body and the cytoplasm

in the X − Y plane, for efficiency, the rotation axis should
be positioned within the X − Y plane through the origin.
The rotation is the most effective when the rotation axis is
perpendicular to the orientation of the polar body. Given that
the position of the polar body is unknown, and the possibility
of its orientation is the same, the rotation axis can be selected
at random. For simplicity, we select the Y-axis as the rotation
axis, denoted as K̂Y =

[
0 1 0

]T
.

B. Probability calculation of polar body appearance based on
kinematic modeling

To calculate the a posteriori probability of the polar body’s
appearance in the image, we perform a back-projection of the
polar body region from the image plane onto the 3D surface
of the cell and analyze the area on this 3D surface that the
polar body may occupy.

There are two cases according to the visibility of the polar
body. In case 1, the polar body is visible in the image after cell
holding, which implies that the polar body is situated near the
equator of the cell. Consequently, the cell does not need to be
rotated. Assuming that the polar body is located in the region
with the orientation (ϕ1, ϕ2], this region is back-projected onto
the 3D sphere with the area S0. The area S0 can be calculated
as follows:

S0(ϕ1, ϕ2) = ∫arccos
D
C

0 2 · cosφ · C2 · (ϕ2 − ϕ1) · dφ, (6)

where the integral variable φ represents the inclination angle
of the polar body.

In case 2, the cell is rotated around the Y-axis to bring
the polar body into view. Assuming the rotational angle is
from θ1 to θ2, the newly observed area of the polar body with
an orientation from ϕ1 to ϕ2 can be calculated by a double
integral:

Sθ(θ1, θ2, ϕ1, ϕ2) = ∫θ2θ1 ∫
α(ϕ2)
α(ϕ1)

h (α, θ)·cosα·C2·dα·dθ, (7)

where the integral variable θ represents the rotational angle,
α (ϕ) is an angle function related to the polar body orientation
ϕ:

α (ϕ) = arcsin
D · sinϕ

C
, (8)

Function h (ϕ, θ) is a binary function related to the angles
ϕ and θ, which represents whether there still exists an unob-
served area in the orientation of ϕ after a rotational angle of
θ:

h (ϕ, θ) =

 1 2 · arcsin

(√
D2−(C·sinα(ϕ))2√
C2−(C·sinα(ϕ))2

)
> θ

0 others
,

(9)
Please refer to the Supplementary Material for further details
on the derivation of Eq. (6) and (7).

Combining Eqs. (6) and (7), the posteriori probability of
the new appearance within the orientation range (ϕ1, ϕ2] after
rotating the cell by the angle from θ1 to θ2 can be expressed:
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P (θ1, θ2, ϕ1, ϕ2) =
S (θ1, θ2, ϕ1, ϕ2)

Sspere
, (10)

where, Sspere = 4πC2 is the surface area of the 3D sphere
where the polar body moves. S represents all possible posi-
tions of the polar body on the sphere:

S (θ1, θ2, ϕ1, ϕ2) =

{
S0 (ϕ1, ϕ2) θ1 = θ2 = 0

Sθ (θ1, θ2, ϕ1, ϕ2) others
.

(11)

C. Probability estimation of polar body appearance based on
kinematic simulation

There are numerous uncertainties in cell rotation, such as
the difference between the actual and set rotational angle,
and variations in the sizes of the polar bodies. We further
employed the kinematic simulation of cell rotation to model
the uncertainties and estimate the appearance probability of
the polar body.

In the kinematic simulation, the actual rotational angle of
the cell was modeled to follow a normal distribution, with
a mean equal to the set value and a standard deviation of
10%, based on experimental observations. The rotation was
incremented in units of 10◦, which means we assess whether
the polar body appears in the image plane using the visual
algorithms every 10◦ of cell rotation. The increment ensures
that the polar body will be not missed due to the excessive
rotation. Since the stochastic nature of the cell’s orientation
during micropipette aspiration, the polar body is randomly
initialized with a uniform distribution at any orientation on
the surface of the sphere. Based on the characteristics of
the porcine oocytes, the radius of the polar body Rpb is
statistically approximately 0.17 times that of the cytoplasmic
radius Rcy . Therefore, the radius of the polar body was set
according to a normal distribution with a mean value of
0.17Rcy and a standard deviation of 10%. Meanwhile, the
polar body is considered visible when at least one-third of
its area appears in the image plane. This criterion implies a
minimum distance of D = Rcy−0.27Rpb from the polar body
center to the origin, which is calculated based on geometric
relationships. Fig. 3 shows the 3D visualization (Fig. 3(a-c))
and the corresponding image plane projections (Fig. 3(d-f))
of the cell rotation kinematic simulation. As the cell rotates,
the potential regions where the polar body can be located (the
purple region in Fig. 3(a-c)) diminish in size, transforming
the presence of the polar body in the cell from a probabilistic
event to a deterministic one.

To verify the kinematic simulation, the cell rotation sim-
ulation was conducted 100,000 times, with the polar body
randomly distributed each time. The rotational angle of the
cell and the orientation of the polar body were recorded when
the polar body appeared in the image. Fig. 4(a) shows the
posteriori probability of the polar body appearance, where
the X-axis and Y-axis represent the rotational angle of the
cell and the orientation of the polar body at the moment of
appearance, respectively. Since the rotation angle of 0◦ implies
that the polar body is already situated in the image plane

Fig. 3. Kinematic simulation of cell rotation. (a-c) 3D model of the cell.
The green sphere and the small blue sphere represent the cytoplasm and the
polar body, respectively. The purple circle represents the boundary between
the visible and invisible spherical shell regions of the polar body in the image
plane. The purple area represents the current possible spherical shell region
of the polar body. As the cells rotate, more of the spherical shell regions are
observed in the image plane, so the purple area correspondingly reduces in
size. (d-f) The corresponding projection of the cell model in the image plane.
The black circle and the small blue circle represent the cytoplasm and the
polar body, respectively.

Fig. 4. A posteriori probability of polar body appearance with the rotational
angle of the cell and the orientation of the polar body. (a) Kinematic simulation
results. (b) Theoretical calculation results.

without cell rotation, this situation is not shown in the figure
for better visualization. For statistical analysis, the appearance
orientation of the polar body is divided into 36 intervals, each
spanning 10◦ . The same rotation and oocyte shape parameters
were input into Eq. (11) to theoretically calculate a posterior
probability of the polar body appearance. As shown in Fig. 4,
the results from the kinematic simulation are consistent with
the theoretical calculations, validating the effectiveness of the
simulation model.

III. POLAR BODY ORIENTATION PREDICTION BASED ON
KINEMATIC SIMULATION

Based on the analysis in the preceding section, it is evident
that the appearance orientation of the polar body correlates
with the rotation angle during the rotation process. Further
considering practical cell manipulations, it is laborious to
ensure the presence of polar bodies in all oocytes to be oper-
ated. Moreover, visual detection errors are inevitable during
cell rotation. Consequently, the actual cell rotation process
cannot be accurately simulated by the theoretical model alone.
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Fig. 5. Possible rotation results in cell rotation simulation.

To address these issues, we utilized kinematic simulation to
analyze and predict the orientation of the polar body.

A. Kinematic simulation setup

According to the extensive statistics in our oocyte vitro
maturation experiments, we made a generalizing assumption
that 80% of the oocytes had polar bodies. We also considered
two types of polar body visual detection errors: FP and FN.
FPs occur when a polar body is falsely detected in images
lacking a polar body, while FNs occur when a polar body
is missed in images where it is present. In our rotation
simulation, visual detection was conducted after every 10◦

increment of cell rotation.
Under the above setting, the possible rotation results are

shown in Fig. 5 according to the presence of polar bodies
and the occurrence of visual detection errors. The arrows
and boxes represent 10◦ increments of cell rotation and the
results of visual detection, respectively. Within the boxes, TP
(true positive) and TN (true negative) refer to correct visual
detection results, indicating correct detections of images with
or without a polar body.

When an oocyte contains a polar body, which is assumed
to be randomly distributed, three cases may occur:

• If the visual detection is correct after each rotation, a
series of TNs followed by a TP once the polar body
becomes visible, resulting in a successful rotation.

• If the visual detection is correct before the polar body
appears, but an FN occurs when the polar body does
appear and FN continues, the rotation is considered
complete after a full-circle rotation. In this case, we
incorrectly conclude that the cell lacks a polar body,
leading to a wrong discard of the cell.

• If an FP occurs during cell rotation, the rotation is
wrongly considered completed, resulting in a failed rota-
tion.

When the oocyte lacks a polar body, two cases may occur:
• If the visual detection is correct after each rotation, a

series of TNs until the cell has completed a full rotation,
resulting in a correct discard.

• If an FP occurs before a full-circle rotation, the rotation is
wrongly considered complete, leading to a failed rotation.

The simulation results vary with differing FP and FN rates.
In the case of FNs, the wrong discard of cells with the polar

body occurs only when continuous FNs happen, which is
very rare. For FP cases, the proportion of failed rotations is
highly sensitive to the FP rate, as a single FP occurrence can
immediately result in failed rotations. Therefore, we should
focus on analyzing failed rotations due to visual FPs.

In this study, we set 6 different FP rates: 0.01, 0.02, 0.05,
0.1, 0.2, and 0.3, which were selected based on recent reports
of polar body detection accuracies. For consistency, the FN
rates were set equal to the corresponding FP rates. A total of
4,700,000 simulations were conducted across these conditions.
After each simulation, we recorded the cell rotational angle
and the orientation of the polar body. Different from cell ex-
periments, in the simulation environment, it is straightforward
to differentiate between the real successful/failed rotations and
correct/wrong discards. We counted all successful and failed
rotation samples at the interval of 10◦ for both cell rotational
angle and orientation of the polar body. The statistics results
were recorded in two matrices SR and SR. Specifically,
SRr

a,o and FRr
a,o represent the number of successful and

failed rotation samples, respectively, for a given rotation
angle range (a− 10◦, a] and polar body orientation range
(o− 10◦, o] at an FP rate r, where a ∈ {10◦, ..., 180◦}, and
o ∈ {−170◦,−160◦, ..., 0, 10◦, ...180◦}. Especially, SRr

0,o

and FRr
0,o represent the samples without any cell rotation.

We predicted the presence of the polar body and assessed
the detection reliability of the polar body according to the
statistics.

B. Presence prediction of the polar body

To predict the presence of the polar body, we focused on the
simulation results of all successful rotations. We calculated the
cumulative probability of successful rotations P rcu SR (a, o)
for a given rotation angle a and polar body orientation o at an
FP rate r according to Eq. (12):

P rcu SR (a, o) =

a/10∑
i=0

SRr
10·i,o

18∑
i=0

18∑
j=−17

SRr
10·i,10·j

, (12)

Taking the FP rate of 0.05 as an example, Fig. 6(a) shows
the cumulative posterior probability P 0.05

cu SR (a, o), where the
X-axis and Y-axis represent the cell rotational angle and the
orientation of the polar body when the rotation is complete.
The probability of successful rotation increases as the cell
undergoes further rotation.

Moreover, we summarized the relationship between the
cell rotational angle and the cumulative posterior probability
P rcu SR a (a) of rotation success under various FP rates
according to Eq. (13):

P rcu SR a (a) =

a/10∑
i=0

18∑
j=−17

SRr
10·i,10·j

18∑
i=0

18∑
j=−17

SRr
10·i,10·j

. (13)

As shown in Fig. 6(b), all existing polar bodies become visible
in the X − Y plane by rotating the cell with a maximum of
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Fig. 6. Cumulative posterior probability of all successful rotations. (a)
Cumulative posterior probability P 0.05

cu SR (a, o) at an FP rate of 0.05. (b)
Cumulative posterior probability P r

cu SR a (a).

140◦. Consequently, if the polar body is not observed after the
cell has been rotated by 140◦, it can be concluded that the cell
does not contain a polar body.

C. Reliability prediction for polar body detection

We analyzed all the simulation results of both successful and
failed rotations to predict the detection reliability of the polar
body. Initially, we calculated the probability of the successfully
rotated samples P rSR (a, o) for a given rotation angle a and
polar body orientation o at an FP rate r relative to all samples,
according to Eq. (14):

P rSR (a, o) =
SRr

a,o

18∑
i=0

18∑
j=−17

SRr
10·i,10·j +

18∑
i=0

18∑
j=−17

FRr
10·i,10·j

,

(14)
Fig. 7(a) shows the probability distribution of the successful

rotations at an FP rate of 0.05 as an example, where the
X-axis and Y-axis represent the cell rotational angle and
the orientation of the polar body, respectively. The situation
without cell rotation is not shown in the figure for better
visualization. The probabilities of the polar body appearing
vary across different orientations. Specifically, the probabilities
of the pole body appearing at 0◦ and ±180◦ are much greater
than those at orientations near ±90◦.

Moreover, we summarized the relationship between the
polar body orientation and the rotation success probability at
an FP rate r. The cumulative probability of successful rotations
P rSR o (o) can be computed using Eq. (15):

P rSR o (o) =

18∑
i=0

SRr
10·i,o

18∑
i=0

18∑
j=−17

SRr
10·i,10·j +

18∑
i=0

18∑
j=−17

FRr
10·i,10·j

,

(15)
Fig. 7(b) shows the rotation success probability under various
FP rates. As the FP rate decreases, the distribution of the polar
body orientation becomes increasingly evident.

Similarly, we calculated the probability of failed rotation
samples relative to all samples P rFR (a, o) and cumulative
probability of failed rotations P rFR o (o), according to Eq. (16)
and (17). Fig. 7(c) and (d) show the probability distributions

Fig. 7. Probability distribution of successful and failed rotations. (a) Probabil-
ity of successful rotation samples relative to all samples P 0.05

SR (a, o) at an FP
rate of 0.05. (b) Cumulative probability of successful rotations P r

SR o (o). (c)
Probability of failed rotation samples relative to all samples P 0.05

FR (a, o) at
an FP rate of 0.05. (d) Cumulative probability of failed rotations P r

FR o (o).

at an FP rate of 0.05 and under varying FP rates, respectively.
Given that the polar body is randomly distributed in the cell,
the probabilities of the polar body appearing are uniform
across different orientations. As the FP rate increases, the
probability of the failed rotation also increases.

P rFR (a, o) =
FRr

a,o

18∑
i=0

18∑
j=−17

SRr
10·i,10·j +

18∑
i=0

18∑
j=−17

FRr
10·i,10·j

,

(16)

P rFR o (o) =

18∑
i=0

FRr
10·i,o

18∑
i=0

18∑
j=−17

SRr
10·i,10·j +

18∑
i=0

18∑
j=−17

FRr
10·i,10·j

,

(17)
We integrated the simulation results of both successful

and failed rotations to calculate the probability of the failed
rotations P rfail (a, o) across different rotation angles and polar
body orientations according to Eq. (18).

P rfail (a, o) =
FRr

a,o

SRr
a,o + FRr

a,o

. (18)

Fig. 8 shows the probability distributions of the failed
rotations P rfail (a, o) at FP rates of 0.01, 0.02, and 0.05,
respectively. P rfail (a, o) is significantly higher at orientations
near ±90◦ than at 0◦ and ± 180◦. This is because failed
rotations are independent of the orientation of the polar body,
while the successful rotations depend on that angle, as shown
in Fig. 7(b) and (d). Specifically, detection results at the
orientations of ±90◦ are incorrect because the polar body
will not appear there. Additionally, as the FP rate increases,
the overall probability distributions for failed rotations also
increase. Since failed rotations are caused by visual detection
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Fig. 8. Probability distribution of the failed rotations P r
fail (a, o) at FP

rates of (a) 0.01, (b) 0.02 , and (c) 0.05.

errors, P rfail (a, o) serves as an indicator of the detection
reliability for a given rotation angle a and orientation o.

D. Out-of-plane rotation strategy
Through previous theoretical analysis and simulation statis-

tics, we have determined that the appearance of the polar body
is related to the rotation angle of the cell and the orientation
of the polar body, despite the random distribution of the
polar body. Based on these findings, we draw the following
conclusions.

1) The rotation axis should lie within the X − Y plane
and pass through the origin to maximize the efficiency
of polar body localization.

2) It is only necessary to rotate the cell around the rotation
axis by 140◦ to ascertain if the cell contains a polar body.
This eliminates the need for repeated rotation, thereby
reducing the time required for confirmation.

3) The detection reliability could be utilized to reduce the
incidence of failed rotations due to visual false detections
of the polar body, leading to a more stable rotation
process.

For Point 3, the FPs in the polar body detection are often
caused by impurities that are precisely located between the
cytoplasm and the transparent band. If the cell is re-rotated and
the image is captured again for re-detection, it will help miti-
gate the impact of the initial FP. Consequently, we determined
whether to perform a second detection based on the reliability
of the polar body detection. Additionally, considering that a
higher FP rate correlates with more frequent detection errors,
continuous re-detection may only prolong the rotation process
without significantly improving the success rate of rotation if
the FP rate is low. Ultimately, we adopted a second detection
only in situations where the detection reliability falls within
a predetermined range. Based on the probability of the failed
rotations P rfail (a, o) in Eq. (18), the detection reliability is
classified into three categories:

• If P rfail (a, o) is less than twice the FP rate in the polar
body detection, the detection is deemed reliable. It is
concluded the polar body has been successfully identified,
and the out-of-plane rotation is terminated.

• If P rfail (a, o) is higher than 0.9, the detection is deemed
unreliable. It is concluded that the visual detection is
likely incorrect, no polar body is present in the image,
and further rotation is necessary.

• If P rfail (a, o) lies between twice the FP rate in the
polar body detection and 0.9, the detection is considered
suspicious and a second detection is conducted.

We have designed an out-of-plane rotation strategy, as
shown in Fig. 9. We set the rotation axis to the Y-axis based on
Point 1 and performed polar body detection while cell rotation.
If the polar body was not detected, the cell was rotated by
10◦ and the detection continued. If the polar body remained
unidentified after a total rotation of 140◦, meaning that all
regions on the cell surface have been inspected according to
Point 2, the cell was determined to lack a polar body and was
discarded. Once the polar body was detected, we assessed the
detection reliability. For situations deemed suspicious accord-
ing to Point 3, we re-rotated the cell of 20◦ and conducted a
second detection. If it was ultimately determined that the polar
body was identified, the out-of-plane rotation was completed.

Specifically, before the cell rotation process, a pre-
experiment was conducted on the cell samples to statistically
assess the FP rate of the visual detection algorithm. If the de-
tection algorithm is modified or changes occur in the cell state
or liquid environment, the pre-experiment is repeated to update
the FP rate. Simulated detection reliability data corresponding
to various FP rates were pre-stored in a table. This table was
used for real-time lookup during the cell rotation process based
on the current FP rate. For real-time polar body detection, we
utilized a U-net-based image recognition method as described
in Ref. [36]. In this experiment, detection reliability data with
an FP rate of 0.02 was used.

Cell rotation was performed using a pair of glass mi-
cropipettes (holding and injection micropipettes) without ad-
ditional equipment. We employed trajectory planning based
on the minimum rotation force [11] and the optimal poking
direction [13] of the injection micropipette to ensure effective
cell rotation, as illustrated in Fig. 10. The oocyte was im-
mobilized on the holding micropipette with negative pressure,
and the injection micropipette tip was positioned 50 µm from
the zona pellucida along the X-axis (Point A). The oocyte’s
position and radius were obtained using Canny edge detection
and Hough circle detection, while the injection micropipette
tip was located via template matching. Next, the injection
micropipette moved along the Z-axis to the start position (Line
A-B) for out-of-plane rotation. Point B was located above the
imaging plane at R ·cosθin, where R is the cell radius and θin
is the initial angle. It then pokes the cell along the negative
X-axis (Line B-C) and pull the cell to rotate along an arc (Arc
C-D) with a contact angle ∆θ. The micropipette returned to
the start position via Lines D-E and E-B. During Arc C-D, the
poking depth was dynamically calculated based on the oocyte’s
mechanical properties and the micropipette’s orientation [11].
Finally, this B-C-D-E-B trajectory was repeated cyclically for
continuous cell rotation at a speed of 100 µm/s.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

We conducted simulations to evaluate the proposed strategy
by testing three types of out-of-plane rotation strategies in
the simulation environment. The strategies evaluated were: the
one-shot detection strategy which detects the polar body only
once, the universal re-detection strategy which re-confirms the
detection of the polar body every time, and the proposed
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Fig. 9. Out-of-plane rotation strategy based on polar body orientation
prediction.

Fig. 10. Out-of-plane rotation control method.

strategy which decides whether to re-detect the polar body
based on its detection reliability. In simulations, the detec-
tion reliability was calculated using the lookup table of the
simulation statistical results. The re-rotation angle was set to
20◦ to ensure that the polar body would not disappear due
to excessive rotation and to maintain visual differences in the
images before and after re-detection.

We performed 6,000,000 rotation simulations on oocytes
with polar bodies at 7 different FP rates ranging from 0.01
to 0.3. Fig. 11(a) shows that the average rotation success rate
decreases for all strategies as the FP rate increases, but the
decline varies. Both the proposed and universal re-detection
strategies consistently outperform the one-shot strategy. At
an FP rate of 0.05, the proposed strategy achieves a 92.9%
success rate, 3% higher than the one-shot strategy’s 89.9%,
effectively reducing the FP impact to an equivalent rate of
0.03. These results indicate that the proposed and universal
strategies both enhance the robustness against FP-related errors
than the one-shot strategy. However, Fig. 11(b) illustrates
that compared to the one-shot strategy, both the proposed
and universal re-detection strategies require additional rotation
angles to achieve higher success rates.

To quantify the trade-off between success rate improvement
and additional rotation of the proposed and the universal re-
detection strategy, we defined the rotation efficiency as the

Fig. 11. (a) Average rotation success rate, (b) average rotation angle and (c)
rotation efficiency for the proposed strategy, one-shot detection strategy, and
universal re-detection strategy respectively under varying FP rates.

ratio of success rate improvement to the increased rotation
angle (rad) compared to the one-shot strategy. As shown in Fig.
11(c), the proposed strategy achieves significantly higher ro-
tation efficiency than the universal re-detection strategy across
all FP rates. This demonstrates that the proposed strategy not
only achieves a high success rate but also minimizes additional
rotation, effectively balancing robustness and efficiency.

B. Experimental setup

As shown in Fig. 12, the micromanipulation system used
to perform our designed cell rotation method consists of
the following facilities: an inverted microscope (Ti-E, Nikon)
equipped with an X − Y motorized stage (ProScan III,
Prior). The cell samples, placed in a 35mm petri dish on
the X − Y stage, are manipulated by a holding micropipette
(70µm in outer diameter and 30µm in inner diameter) and a
sharpened injection micropipette (25µm in diameter). These
two micropipettes are mounted on motorized X − Y − Z
micromanipulators (MP285, Sutter), offering a motion range
of 25mm and a positioning resolution of 0.04µm. A motorized
syringe is connected to the holding micropipette for cell aspi-
ration. Additionally, a CCD camera (acA645-100gm, Basler) is
mounted on the microscope to capture images at 30 frames/s.

In the experiment, mature porcine oocytes were prepared
as follows: Porcine ovaries were collected from the local
slaughterhouse, and the oocytes were aspirated from follicles
(2-6mm in diameter) using a syringe. Subsequently, these
oocytes were matured in vitro for 42 hours to reach maturity.
All oocytes were tested within 4 hours of delivery and were
stored in a 37◦C environment.

C. Experimental results

In the cell rotation experiment, the proposed rotation strat-
egy was evaluated 100 times by using 20 porcine oocytes.
Specifically, 17 oocytes containing polar bodies were rotated
90 times, while 3 oocytes lacking a polar body were rotated
10 times. Consistent with the conditions of real biological
experiments, we did not pre-screen the cells, so there were
more impurities around the oocyte, as shown in Fig. 13.
The polar bodies were initially distributed randomly before
each rotation. When the out-of-plane rotation stopped, we
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Fig. 12. System setup for cell rotation experiment.

considered a rotation successful if the majority of the polar
body was visible in the image plane. Meanwhile, we deemed
a rotation a correct discard if a cell without a polar body was
accurately identified and the rotation was stopped promptly.
We used a holding pressure of 1600 Pa, with the poking depth
during rotation kept below 15µm. To assess the impact of
rotation on cell viability, all oocytes were carefully examined
under high magnification (×20 objective lens) after rotation.
The observations showed no observable morphological dam-
age. Furthermore, FDA fluorescence staining was conducted
for viability evaluation, revealing no significant difference in
fluorescence intensity compared to the unmanipulated control
group (results shown in the Supplementary Material), confirm-
ing that the operation caused minimal damage.

Fig. 13 shows the cell rotation results employing the pro-
posed out-of-plane rotation strategy. In one rotation sequence
in Fig. 13(a-c), an impurity (the red box in Fig. 13(b))
is located at the orientations of 90◦. Given the low visual
detection reliability at this orientation, the detection is deemed
unreliable and the cell needs to continue rotating. In the
following rotation, the rotation is considered terminated once
the detection reliability is sufficiently high, as shown in Fig.
13(c). Fig. 13(d-f) shows another instance of cell rotation. In
Fig. 13(e), the detection reliability falls into the suspicious
range, thus an additional rotation is performed for re-detection.
As the polar body is not detected for the second time after
cell rotation, as shown in Fig. 13(f), the previous detection is
deemed incorrect and the rotation process continues.

Out of 90 rotations of porcine oocytes with polar bodies,
76 were successful, yielding a success rate of 84.4%. The
failed rotations were mainly attributed to visual detection
errors, which included 4 FN cases and 10 FP cases. The
average time and rotation angle for out-of-plane rotation of
cells were about 5.9s and 47.1◦, respectively, with a maxi-
mum rotation angle of 100◦ in successful cases. Among the
10 rotations of the oocytes lacking a polar body, only one
rotation failed due to false detection, and the remaining 9 tests
successfully terminated after a 140◦ rotation. The whole cell
rotation process took 13.3 seconds on average. Table 1 shows
the comparison between the proposed method and existing
methods. The proposed method improved the success rate of
out-of-plane rotation of cells containing polar bodies with only

Fig. 13. Cell rotation results based on the proposed out-of-plane rotation
strategy. (a-c) A cell rotation with unreliable detection due to impurities. (d-f)
A cell rotation with suspicious detection and re-detection. Scale bar: 50µm

TABLE I
COMPARISON BETWEEN THE PROPOSED METHOD AND OTHER PUBLISHED

CELL ROATION METHODS

Polar body existence Method Success Rate Operation Time

Existent
Gong’s [36] 80% 5.5s

Ours 84.4% 5.9s

Non-existent

Wang’s [17] - 15 rounds

Gong’s [36] - 30s

Leung’s [38] - 30s

Ours 90% 13.34s

a small increase in time. Additionally, for cells without a
polar body, the proposed method provided more accurate and
fast criteria for judgment, improving the rotation efficiency
significantly.

D. Discussion

In this study, the effectiveness of the proposed out-of-
plane rotation strategy was verified through the porcine oocyte
rotation experiments. Compared to other types of oocytes
commonly used in experiments, such as human and mouse
oocytes, porcine oocytes have a smaller proportion of polar
bodies, which are often completely occluded by the opaque
cytoplasm. This makes the out-of-plane rotation of porcine
oocytes particularly challenging. The proposed strategy is
particularly useful for this task due to its robustness in visual
detection. Although when the FP rate of the visual detection
algorithm is high, relying solely on the proposed re-detection
strategy is insufficient to achieve a satisfactory rotation success
rate. In such cases, improving the detection algorithm accuracy
itself becomes a more effective solution. However, it is worth
noting that this method constitutes a universal framework, and
can be flexibly applied to other vision-based rotation problems
by simply changing the shape and rotation parameters in the
simulation, improving the effectiveness of rotation.
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In the experiment, out of 90 rotations, approximately 500
detections were conducted, with 14 FPs and 4 FNs. The
average accuracy of online polar body detection was 96.5%,
slightly lower than the pre-experiment results of 98%. Specif-
ically, 14 FPs were primarily attributed to the impurities of
the oocytes. Among them, 10 FPs resulted in failed rotations,
while the other 4 FPs were successfully identified by the
proposed strategy. There were also 4 rotation failures caused
by FNs, all of which occurred because the polar bodies were
too small to be recognized in multiple visual detections.

It is important to note that, despite the polar body detection
accuracy exceeding 96%, the final success rate of out-of-
plane rotation was only 84.4%. Although this represents a
4% improvement over the detection results in Ref. [36], there
was still significant room for improvement. In the future, we
will consider the temporal correlation between consecutive FPs
and FNs in experiments, introduce confidence analysis from
the image detection neural network, and explore optimizations
in hardware design and the rotation control algorithm. This
probably further improves the success rate and efficiency of
the rotation system.

V. CONCLUSION

Three-dimensional rotation of the biological cell is crucial
for subcellular structure localization in various cell manipu-
lations. In which, out-of-plane rotation faces challenges due
to the lack of effective visual feedback. In this paper, we
developed a kinematic cell rotation model and analyzed the
reliability of polar body detection based on the model. Fur-
thermore, we designed a robust cell rotation strategy based on
polar body orientation prediction. This work is the first evalu-
ation of visual detection during automatic cell manipulations.

To verify the proposed cell rotation strategy, a total of
6,000,000 rotation simulations were performed on the oocytes
with polar bodies at different FP rates. The proposed strategy
successfully balanced the rotation success rate with rotation
efficiency. Moreover, we conducted 100 out-of-plane rotation
experiments using 20 porcine oocytes, which was particularly
challenging due to the small size and occlusion of the po-
lar bodies in the porcine oocytes. The rotation success rate
was 84.4%, which represented a 4% improvement over the
previous detection results, indicating the effectiveness of the
proposed method. In the future, we aim to enhance cell rotation
performance by incorporating temporal correlation analysis in
continuous visual detection.
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