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Volumetric imaging is increasingly in demand for its precision in statistically visualizing and analyzing the
intricacies of biological phenomena. To visualize the intricate details of these minute structures and facilitate
the analysis in biomedical research, high-signal-to-noise ratio (SNR) images are indispensable. However, the
inevitable noise presents a significant barrier to imaging qualities. Here, we propose SelfMirror, a self-supervised
deep-learning denoising method for volumetric image reconstruction. SelfMirror is developed based on the in-
sight that the variation of biological structure is continuous and smooth; when the sampling interval in volumetric
imaging is sufficiently small, the similarity of neighboring slices in terms of the spatial structure becomes ap-
parent. Such similarity can be used to train our proposed network to revive the signals and suppress the noise
accurately. The denoising performance of SelfMirror exhibits remarkable robustness and fidelity even in
extremely low-SNR conditions. We demonstrate the broad applicability of SelfMirror on multiple imaging
modalities, including two-photon microscopy, confocal microscopy, expansion microscopy, computed tomogra-
phy, and 3D electron microscopy. This versatility extends from single neuron cells to tissues and organs,

highlighting SelfMirror’s potential for integration into diverse imaging and analysis pipelines.
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1. INTRODUCTION

The advancements in two-photon fluorescent microscopy tech-
nology and fluorescent probes have enabled scientists to delve
from two-dimensional imaging to more complex volumetric
visualization. This progression has allowed researchers to cap-
ture detailed three-dimensional representations of biological
samples, providing unparalleled insights into cellular and
subcellular structures and processes [1-3]. To capture these
intricate detail structures for subsequent biological analysis, a
high-signal-to-noise ratio (SNR) image containing sufficient in-
formation about the sample is necessary. However, poor SNR
imaging caused by the paucity of a fluorescent photon budget is
the main challenge of fluorescent microscopy. That is, fluores-
cent imaging suffers from the dilemma among image SNR, il-
lumination intensity, and imaging speed.

Although higher excitation power can directly improve fluo-
rescent photon harvest, this comes with adverse effects such as
concurrent photobleaching, phototoxicity, and tissue heating,
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which can be detrimental to the health of the sample, skew
experimental outcomes, and hinder the understanding of
biological phenomena [4-6]. Another plausible strategy is to
utilize more advanced fluorescent probes and detection tech-
niques with higher quantum yields and improved photostabil-
ity. Still, the usage conditions for these techniques are more
demanding [7,8]. Apart from the above, fluorescent imaging
still suffers from photon shot noise [9-11], which comes from
the inevitable stochasticity of photon detection and electronic
noise, leading to increased measurement uncertainty and im-
posing limitations on imaging resolution, speed, and sensitivity.

Extensive research efforts have been investigated to remove
noise from fluorescent imaging; a “hard” approach is the devel-
opment of high-performance fluoroprobes [7,12,13], as well as
advancements in excitation and detection physics [10,14].
A softer way is with the assistance of a post-hoc computation
aid algorithm. The conventional denoising approach attempts
to use linear filters to model the noises and split them from
signals [15,16]; however, these methods often fall short in
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performance and applicability due to the inherent challenge of
accurately characterizing the signal and noise distributions,
which are rarely known in practice. Recently, the data-driven
denoising algorithm, especially a deep-learning-based method,
demonstrated promising performance in reconstructing signals
from noisy images [17-23], and has been applied in fluorescent
imaging [24-27]. These non-linear supervised learning meth-
ods have great potential to learn any arbitrary distribution of
signals and noises, resulting in promising denoising outcomes
with reduced variance. This potential is rooted in the utilization
of extensive training data consisting of noisy-clean pairs of the
same samples and events, allowing the network to learn the in-
tricate mappings from noisy to clean images. Yet, the inherent
presence of noise in fluorescent imaging makes the acquisition
of corresponding noisy-clean image pairs impractical for
denoising fluorescent imaging data. This limitation necessitates
the development of alternative strategies for denoising that do
not rely on the noisy-clean image pairs datasets.

Lately, self-supervised or unsupervised learning techniques
[28-32] have emerged as a promising solution to remove the
obstacle. Unlike the supervised learning method, which
heavily relies on ground truth labels for supervision, the
learning process in self-supervised methods only uses the noise
data for denoising. One strategy is to extend denoising into
the temporal domain by imaging the same signal at two differ-
ent times and to train the denoiser by mapping these noisy
pairs of images [28,31]. However, these methods are not prac-
tical for denoising fluorescent imaging data, especially for
volumetric data, because data collection is expensive and
time-consuming. Besides, these methods exhibit reduced gen-
eralizability to data that deviate significantly from the training
distribution. An alternative denoising strategy involves train-
ing the data solely on themselves, eschewing any external in-
formation or knowledge about the noise’s distribution or
variance within the images [29,30,33-36]. These stem from
that single images contain substantial internal data redun-
dancy and provide useful priors [37]. Noise2Void [29]
and Noise2Self [30] are two of these denoisers by training
a neural network to predict the value of a pixel from its sur-
rounding neighborhood. Further, Neighbor2Neighbor [34]
and Noise2Fast [35] introduced downsampling strategies to
generate synthetic training pairs from single noisy images
for denoising. However, the execution time required for these
methods, even for processing 2D images, can be substantial.
The high-dimensional nature of 3D data significantly in-
creases the computational complexity and memory require-
ments, making them impractical for use in fluorescent
volumetric imaging data.

To this end, we propose SelfMirror, a deep self-supervised
denoising method for fluorescent volumetric imaging data
without any high-SNR observation for training. SelfMirror
aims to capture the inherent patterns and structures from
the low-SNR data and effectively denoise it. The inner
assumption of our method is that the continuous and smooth
characteristics of biological signals imply that neighboring slices
within the volumetric data share common spatial structures.
This indicates that the patterns and structures observed in
one slice are likely to be consistent and recognizable in adjacent
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slices. Based on the above assumption, we proposed a
deep-learning network to fully utilize the intrinsic spatial infor-
mation within volumetric imaging data. The intrinsic charac-
teristics of SelfMirror make it particularly well-suited for
denoising volumetric imaging using only spatial information,
without the need to acquire temporal redundancy information
as in Noise2Noise, and avoiding the necessity of masking
information and computational resources demanding as in
Noise2Void. Additionally, we introduce a feature maps learning
mechanism to further optimize the denoising performance. By
jointly learning the feature maps derived from the dual-network
architecture, this approach effectively reduces the predictive
variance of SelfMirror, thereby significantly enhancing the
overall denoising efficiency.

Furthermore, our approach involves minimal assumptions
regarding the noise statistics of the volumetric data and
does not necessitate an explicit noise model. Consequently,
SelfMirror is adaptable to various noise levels and different im-
aging modalities. We quantitatively evaluated our method on
both simulated and diverse experimental data. The results dem-
onstrate that SelfMirror exhibits great robustness and fidelity
across varied noise level data, with only a minimal performance
drop in extremely low-SNR data. The signals and structures
that were previously obscured by noise become clearly visible
after denoising with SelfMirror, with the noise being signifi-
cantly suppressed. The versatility of SelfMirror is comprehen-
sively evaluated using a diverse range of fluorescent volumetric
imaging data acquired with various microscopy techniques.
This includes two-photon microscopy, expansion light-sheet
microscopy, and confocal microscopy. Besides, the biological
samples employed demonstrate the broad applicability of
SelfMirror, including dendrites, neurons, and cerebrovascula-
ture of mice, as well as Penicillium and the intestines of mouse
embryos. Beyond its effectiveness in fluorescent microscopy, we
further demonstrate the generality of SelfMirror for denoising
volumetric data from other modalities. This includes thora-
coabdominal computed tomography (CT) from humans and
neuron 3D electron microscopy (3D-EM) from a mouse cor-
tex. These results highlight the exceptional capability of
SelfMirror for denoising a wide range of volumetric imaging
data. Its versatility and generality across diverse modalities
and biological samples make it a valuable asset for researchers
investigating various subcellular and macro phenomena.

2. RESULTS

A. Principle of SelfMirror

Fluorescent images are susceptible to noise, particularly from
the dominant photon shot noise and electronic noise, resulting
in low-SNR images. Theoretically, the low-SNR image X can
be decomposed into the sample signals G, representing ground

truth (GT), and noise /V:
X=G+ N. (1)

G represents the structural information of the biological
sample, which is not independently distributed, whereas N
is normally assumed as the zero-mean Poisson-Gaussian
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additive noise from the photon shot noise and electronic noise,

in which each pixel is independent. Then the task of denoising
aims to recover the underlying clean signal G from the observed
noisy data X by finding a function: f(X) = G. Normally,
we can train a network to approximate f by using pairs of
noisy-clean (X - G) images:

0= arggnin Z Z:L{fa(X(i))’ G(7)}, (2

where 7 denotes the pixel index in an image, L is the loss func-
tion, O represents the parameter of the network, and 6 is the
optimized parameter of the network. This scheme is impractical
for fluorescent imaging denoising because it inevitably suffers
from noise degradation. Strategies like Noise2Noise extended it
to the temporal domain, that is, imaging signal G twice:
X' =G+ N'"and X" = G+ N". It proposed to train the
network only using pairs of noisy-noisy images without ground
truth supervision:

0= argmin DD LS X 6D, X ()}
= asgmin DD HfoX'(@), GG + N" ()}
zarg;ninZZL{fg(X'(z')), G(i)}. (3

However, capturing a pair of images from the same scene in
fluorescent imaging is also impractical, especially in scenarios
when the imaging procedure itself is time-consuming, as is
the case in structure light microscopy. In other kind of strategies
like Noise2Void, these methods take adjacent pixels of pixel 7 in
two-dimensional images as the receptive field RF(7) to predict
pixel 7:

6 = asgmin DD Lo XREGD\DLXG) (@)

By excluding the center pixel from the receptive field, the
network is prevented from simply learning the identity
mapping. However, the network may struggle to assign appro-
priate weights to the excluded pixel when calculating the
output. This issue becomes particularly evident when
denoising isolated pixels or dealing with high irregularities
within images.

Our method takes a related but different approach. Instead
of blinding the input image, we propose exploring the data’s
spatial excessiveness to denoise the images. The central prin-
ciple of SelfMlirror is to perform denoising based on the struc-
tural continuity of biological samples with minute bias by
exploiting 3D information only in spatial domains (Fig. 1A).
Structural continuity of biological samples results in the shape
and size of the structure change gradually. When capturing
images, this smoothness and consistency are observed as a
gradual gradient in the images, as long as the sampling rate
of two adjacent pixels is sufficiently close in all three axis di-
mensions. In other words, when we analyze the 3D stack im-
ages by slicing them in the depth dimension as the way it was
imaged, each pair of consecutive frames can be treated as in-
dependent images with their independent noise and distinct
biological signals. However, despite these differences, the
structures within these consecutive frames exhibit remarkable

similarity due to the continuity and smoothness of the under-
lying biological sample:

X, =G, + N,
X1 =G + N,
Gs = G:-H + [} (5)

where ¢ is the error between G, and G, . When the imaging
interval along the z-axis is small, G, and G, | share great sim-
ilarity, that is, e is near to zero (supplementary note and sup-
plementary Figs. S4-S6 in Ref. [38]). Then the network can

be trained as analogous to Eq. (3), and we have

0 =argmin} > Lfo(X,(0). X110}
~ argznin > ZL{ FoX, (), G 1 (3)}
=argmin} > LUfo(X,(0), G.(0)}: (6)

Note that SelfMirror is particularly designed for denoising
volumetric imaging by using frame-level adjacent spatial
information, in which the time domain is not present. That
is, three-dimensional spatial sequences typically contain substan-
tially fewer images compared to temporal image sequences.
Consequently, learning only spatial information between slices
for denoising is insufficient for volumetric data (Section 2.B).
To address this limitation, we propose leveraging full three-
dimensional spatial information for denoising learning. As shown
in Figs. 1A, the original raw image stack is sampled to generate
pairs of sub-stacks (Fig. 1A and Section 4), which are then fed
into our proposed network for training. For the implementation
of the network f,, we proposed a sharing network for
capturing this spatial information. We first adopted the 3D
U-Net architecture as the backbones and turned them into a
self-supervised network (Fig. 1A and Section 4). The parameters
of the two networks in our SelfMirror are shared, in this way, by
being encoded into the shared learnable network; the separated
spatial information can interact and make the network more ef-
ficient. In addition, we propose a self-constrained learning con-
sisting of feature map loss and image loss (Fig. 1A and Section 4).
The feature map loss supervises the distance between the two
sub-stacks, while the image loss supervises the distance between
the output image and the sub-stacks. In the inference stage, the
whole noisy stack would be fed into the trained SelfMirror model
and output the denoised stack (Fig. 1B).

B. Performance Validation on Simulated Datasets

For the quantitative evaluation of SelfMirror’s performance, we
first validate it on simulated volumetric fluorescent imaging
data, in which noise-free images were generated using NAOMi
[39] and corresponding noisy images with different SNRs were
synthesized by applying different levels of mixed Poisson-
Gaussian noise (see supplementary Fig. S1 in Ref. [38]).
Poisson distribution (P) simulates the photon shot received by
the image; higher P means higher SNR. These noises signifi-
cantly obscured the spatial information of neurons in the
original data stack. After applying our method, SelfMirror
effectively suppressed these noises, revealing previously hidden
details (Figs. 1C and 2A, 2B). Notably, both neuronal somas
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Fig. 1. Principle of SelfMirror and visualization of denoising three-dimensional imaging data. (A) Self-supervised learning strategy of SelfMirror.
An imaging z stack was obtained by volumetric imaging. The original noisy image sequence is split into two sub-sequences. Each sub-stack is fed into
a separate but identical network for training. The parameters of the two networks are shared. (B) The inference scheme of the trained SelfMirror; the
whole noisy stacks would be fed into the network. (C) An example of 3D volume rendering of the neuronal population. The left shows the raw low-
SNR volume, the middle shows the SelfMirror denoised volume, and the right shows the GT reference volume. Scale bars, 50 pm. (D) Magnified
views of neuronal soma and spine structures in the color-boxed regions in (B). Scale bars, 15 pm.

and, more importantly, dendrites became clearly recognizable
(see Visualization 1).

In our investigation of denoising for simulated datasets, we
compared our proposed SelfMirror approach with eight estab-
lished techniques: DIP [40], N2N [28], N2F [35], N2S [30],
N2V [29], Ne2Ne [34], SUPPORT [36], and SN2N [41].
These methods were applied to eight noisy stacks with varying
SNRs (varying P). To quantify the performance of each denois-
ing method, PSNRs and Pearson correlation coefficients were
evaluated along the three axes (x, y, z) of the image stacks
(Table 1, supplementary Tables S1-S3 and Fig. S17 in
Ref. [38]). As we can see, our SelfMirror achieves overall the
best performance over the previous state-of-the-art results on
all datasets. Although N2F also achieves a higher score in
the Pearson correlation coefficient, its PSNR is not as competi-
tive. N2F udilizes adjacent pixels within a 2D plane to generate
training pairs but fails to exploit spatial redundancy, a
limitation shared by N2N, N2S§, and Ne2Ne. SUPPORT is

specifically designed for functional imaging denoising, requir-
ing a significant number of slices to be sacrificed as feature
channels during training. While this may be reasonable for
functional imaging, it reduces data efficiency for structural im-
aging, where data availability is often limited. SN2N employs a
2D diagonal resampling strategy to create training pairs and
uses Fourier rescaling to restore scale. However, Fourier rescal-
ing can introduce smoothing artifacts [42], which may degrade
the quality of the denoised results.

For further comparison, we demonstrated the denoising
quality from randomly selected sub-stacks with max projection
(Fig. 2A and supplementary Figs. S2, S3 in Ref. [38]). Maxi-
mum projections along three image axes revealed that Self-
Mirror and N2F can effectively reconstruct the signal, whereas
the other methods struggled with signal reconstruction, par-
ticularly for features with only a few pixels in width. Beyond
signal reconstruction, the analysis of maximum projections also
highlighted the effectiveness of our proposed method in noise
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Fig. 2. Performance validation on simulated data. (A) Max projection along three (z, y, x) axes of blue-boxed region in Fig. 1A. From left to right
are the GT, noisy, SelfMirror (ours), DIP, N2V, N2F, N2§, Ne2Ne, and SUPPORT denoised data. The images are colored with red hot. Scale bars,
20 pm. (B) From left to right are the pixel intensity profiles along the white dashed lines of max-z, max-y, and max-x in (A), respectively. The

intensity is normalized to 0-1.

Table 1.
Datasets (P, from 1 to 128)°

PSNR and Pearson Correlation Coefficient (R) along the xy Plane of the Whole Volume from Eight

PSNR (dB)/R

P RAW N2N N2F N2S Ne2Ne SUPPORT SN2N SelfMirror
1 10.95/0.30 9.7710.29 19.77/0.85 19.79/0.82 19.55/0.8 25.61/0.64 24.54/0.82 26.35/0.90
2 13.43/0.40 8.60/0.48 20.12/0.90 20.07/0.88 19.74/0.84 24.10/0.65 20.46/0.87 23.26/0.89
4 15.53/0.51 8.55/0.37 20.38/0.94 20.27/0.91 19.97/0.86 21.17/0.66 20.44/0.88 23.97/0.92
8 17.16/0.62 11.86/0.53 20.56/0.95 20.57/0.92 20.14/0.90 20.16/0.67 20.51/0.88 20.99/0.95
16 18.27/0.70 9.3710.75 20.69/0.96 20.58/0.93 20.28/0.90 20.22/0.67 21.97/0.86 21.14/0.96
32 18.96/0.77 8.95/0.65 20.77/0.96 20.65/0.93 20.34/0.91 20.20/0.67 21.97/0.88 21.14/0.96
64 21.16/0.85 11.05/0.74 22.61/0.97 22.07/0.95 22.16/0.92 21.69/0.67 22.97/0.89 22.83/0.96
128 26.95/0.95 6.33/0.78 27.69/0.97 27.18/0.95 27.7310.97 25.62/0.67 25.22/0.80 27.75/0.96

“A full comparison is in the supplementary Tables S1-S3 in Ref. [38]. The first and second rank values are set in bold formatting.

suppression. While all methods offered some degree of noise
reduction, SelfMirror stands out for its exceptional ability to
substantially suppress noise, making a clear distinction between
signal and background. The pixel trace (Fig. 2B) quantified the
advantage of SelfMirror in both signal reconstruction and noise
suppression, which verified the importance of fully exploiting
spatial information.

C. Denoising Two-Photon Volumetric Imaging Data
of Single Neurons

To verify the effectiveness of SelfMirror on experimentally ob-
tained data, we first employed SelfMirror for noise removal and
signal reconstruction for volume data of a single neuron in an
anesthetized mouse. The results are shown in Fig. 3. We
first captured an image stack of the single-neuron structure

in cortical layer 1 of an anesthetized mouse expressing
dsRes2 under low laser power. The images were fraught with
noise, to the extent that the signal from certain neuronal fea-
tures was barely discernible. To validate our method, we also
obtained a high-SNR image stack from the identical region but
with an elevated laser power. The high-SNR image stack can
serve as the reference for our denoising results. The application
of SelfMirror to the low-SNR image stack yielded remarkable
improvements (Fig. 3A). The original low-SNR image stack,
which was initially filled with a significant amount of noise,
became nearly noise-free after applying the SelfMirror denois-
ing method. The background was rendered extremely clean,
creating a very clear distinction between the background and
the signal, even surpassing the quality of the high-SNR refer-

ence images. The crucial neuronal components were previously
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Fig. 3. SelfMirror denoises two-photon volumetric imaging data of single neurons. (A) Visualization of single neuronal morphological images
with 2340 pm x 340 pm x 220 pm volume (278 planes, 0.66 pm/pixel in x and y, 0.8 pm/pixel in z) in the mouse cortex. From left to right are the
original noisy volume, the same volume denoised with SelfMirror, and the high-SNR reference volume. Color-boxed regions show the magnified
views of the neuron structures with soma, dendrite, and spine. Scale bars, 50 pm for the whole FOV and 20 pm for magnified views. (B) Orthogonal
views of the same imaging plane of the neuronal volumes. From left to right are the noisy data, SelfMirror denoised counterparts, and high-SNR
reference data. Magnified views of blue-boxed regions are shown at the bottom right of the images. Scale bars, 50 pm for the whole FOV and 15 pm
for magnified views. (C) From left to right are the pixel intensity profiles along the blue-, white-, and red-dashed lines in (B), respectively. The
intensity is normalized to 0-1. (D) Left, the statistical evaluation of Pearson correlation coefficient increases of traces before and after denoising by
SelfMirror, in which the trace is randomly selected in xy slices, N = 32. Each line represents one of 32 traces, and increased correlations are colored
blue. Right, Tukey box-and-whisker plot of the fluorescent traces. p values calculated by two-sided one-way paired #test are specified with asterisks,
**p < 0.001. (E) Left, the statistical evaluation of Pearson correlation coefficient increases of traces before and after denoising by SelfMirror, in
which the trace is randomly selected in xz and yz slices, V = 31. Each line represents one of 31 traces, and increased correlations are colored blue,
decreased correlations are colored red. Right, Tukey box-and-whisker plot of the fluorescent traces. p values calculated by two-sided one-way paired
t-test are specified with asterisks, ****» < 0.0001.
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obscured by noise, rendering them difficult or impossible to
discern in the raw low-SNR image. However, after applying
SelfMirror, the dendritic structures became visible, allowing
for a detailed analysis of their morphology and distribution
(see Visualization 2).

Maximum projection along image axes also further verified
the effectiveness of our method (Fig. 3B). The maximum pro-
jection images of the low-SNR stack presented a significant
challenge, particularly for visualizing faint structures. In our
case, the low-SNR image contained small dendrites with weak
fluorescence intensity, rendering them virtually indistinguish-
able from the background noise. These crucial structures were
essentially “drowned out” by the noise, hindering a compre-
hensive analysis. However, the projection images of the
SelfMirror enhanced stack demonstrated that the previously un-
recognized dendritic structures became recognized. Additionally,
fluorescent traces of dendritic pixels were accurately recovered,
exhibiting high consistency with the high-SNR  reference
(Fig. 3C). To further quantify this improvement, we calculated
the Pearson correlation coefficients of randomly selected fluores-
cent traces compared to the high-SNR reference in each maxi-
mum projection direction by giving z, y, or x steps (Figs. 3D, 3E
and supplementary Fig. S7 in Ref. [38]). Pearson correlation was
improved from 0.52 to 0.79 in the max-z projection (Fig. 3D,
median value) and 0.73 to 0.89 in the max-x and max-y pro-
jection (Fig. 3E, median value).

D. Denoising Two-Photon Volume Imaging Data
of Neuronal Population
Following the success of single-neuron data, we employed
SelfMirror for noise removal in the imaging data of large neuro-
nal populations. The results are demonstrated in Fig. 4. Similar
to the denoising performed on single neurons, we first imaged
low-SNR volume images of neuronal populations in cortical
layer 1 of an anesthetized mouse expressing EGFP under low
laser power, followed by high-SNR volume images of the same
region with high laser power as a reference. Despite the high
noise level of the low-SNR images, the neuronal structures can
be revealed from the 3D rendering of the neural volume after
SelfMirror denoising (Fig. 4A and Visualization 3). For a de-
tailed comparison, we present snapshots of manually selected
regions at different depths and an orthogonal view of the neural
volume. With the enhancement of SelfMirror, the structure
and distribution of the neurons became distinctly observable
(Figs. 4B, 4C and supplementary Fig. S8 in Ref. [38]).
Additionally, we extracted the fluorescent traces along a diago-
nal line. Consistent with the results from simulations and sin-
gle-neuron structural imaging, the variance was significantly
reduced, while the small dendrites with weak intensity were
preserved (Fig. 4D). To quantify noise suppression, we sta-
tistically calculated the background variance in a selected
non-signal region. The superior ability of SelfMirror can reveal
high-fidelity noise suppression with extremely low variance
(Fig. 4E). This high-fidelity noise suppression highlights
SelfMirror’s effectiveness in enhancing the visibility and clarity
of neuronal structures, making it a powerful tool for detailed
and accurate imaging of large neuronal populations.
Moreover, to verify the reliability of SelfMirror on other
experimental data, we demonstrated its performance on

publicly available multiphoton structural imaging data of
deep cortical spines and (sub)cortical dendrites, a challenge
for high-SNR imaging due to the depth of these structures
in the brain (Fig. 4F). In these data, adaptive optics (AO) en-
hanced imaging in deep scattering tissues mitigates otherwise
low SNR and serves as a high-SNR reference. Contaminated
by detection noise, the spatial structures of spines and den-
drites were severely corrupted in the imaging data without
AO. After we applied SelfMirror to enhance these data, the
structures became recognizable and free from noise. To fur-
ther illustrate this improvement, we took snapshots of man-
ually selected regions at three different depths for comparison
(Fig. 4F and supplementary Fig. S9 in Ref. [38]). The
previously barely perceptible spines and dendrites were
now distinguishable and maintained their shapes, which
would otherwise have been overwhelmed by noise (see
Visualization 4).

E. Applying SelfMirror Denoising to Multiple
Fluorescent Imaging Microscopy

Then, to demonstrate the versatility of SelfMirror, we evaluated
it on denoising volumetric structural imaging data from different
microscopy techniques and biological samples. SelfMirror was
tested on three volumetric datasets that contained Penicillium
imaged with confocal microscopy, mouse cerebrovasculature im-
aged with two-photon microscopy, and intestine of mouse em-
bryos imaged with expansion microscopy. The qualitative
assessment revealed that SelfMirror was able to enhance the sig-
nals and surpass the noise as illustrated in Fig. 5. For example, in
the data with abundant fluorescent contents like Penicillium and
intestine, SelfMirror successfully reconstructed the elaborate
mycelium structures with exceptional clarity (Figs. 5A and
5B, supplementary Figs. S10, S12 in Ref. [38], Visualization
5 and Visualization 7). For the data with sparse fluorescent con-
tents like cerebrovasculature, SelfMirror surpassed the over-
whelming noise (Fig. 5D, supplementary Fig. S11 in Ref.
[38], and Visualization 6). These results collectively highlighted
SelfMirror’s capability to learn and adapt to the statistical char-
acteristics of a wide range of fluorescent imaging data. For the
quantitative evaluation of SelfMirror with the Penicillium data-
set, analysis of fluorescent pixel traces demonstrated SelfMirror
denoising results exhibited high consistency with the high-SNR
reference (Fig. 5A). Further measurements of the Pearson
correlation coefficients and PSNR, using the high-SNR image
as the ground truth for each plane along the z-axis, also
reinforced the consistency (Fig. 5C). The average PSNR
(27.35 £ 1.05 dB) of SelfMirror showed 5.76 dB increments
compared to the low-SNR image (21.59 £ 0.90 dB) and
the average Pearson correlation coefficient of SelfMirror
(0.93 £ 0.001) showed 0.32 increment compared to the low-
SNR image (0.61 = 0.01). The successful denoising of diverse
datasets across various microscopy techniques underscores the

broad applicability of SelfMirror in biological research.

F. Applying SelfMirror Denoising to Multiple Imaging
Modalities

To further explore the generality of SelfMirror’s denoising capa-
bilities, we ventured beyond fluorescence microscopy and
applied it to different imaging modalities. This demonstrates
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Fig. 4. SelfMirror denoises two-photon volumetric imaging data of neuronal population. (A) Visualization of morphological structure imaging of
neuronal population with a 340 pm x 340 pm x 220 pm volume (144 planes, 0.66 pm/pixel in x and y, 1.5 pm/pixel in z) in the mouse cortex. From
left to right are the original noisy volume, the same volume denoised with SelfMirror, and the high-SNR reference volume. Scale bars, 50 pm. (B)
Magnified views of the neuron structures with sliced soma, and dendrite in the three color-boxed regions at three different depths (52,96,142 pm) in
(A). From left to right are the original noisy data, the same data denoised with SelfMirror, and high-SNR reference data. Scale bars, 20 pm. (C) Example
orthogonal frames of the neuronal volumes. Left, original noisy frames from three-dimensional views. Middle, SelfMirror denoised counterparts. Right,
high-SNR reference frames. The imaging planes are the same on the left, middle, and right. A magnified view of the red-boxed region is shown at the
bottom right of the images. Scale bars, 50 pm for the whole FOV and 10 pm for magnified views. (D) Pixel intensity profiles along the blue-dashed lines
in (C). The intensity is normalized to 0-1. (E) Statistical spectrum plots of the intensity value of the blue-boxed signal-free region in (C), along the
imaging z-axis. One row of the spectrum plot represents all pixels (7; = 2800) of the blue-boxed region in (C). The column direction of a spectrum
plot represents the imaging planes (7, = 144). The equation for total pixels of a plot is 7 = n; x n, = 403,200. All pixels were normalized with a
plasma bar. Zoom-in blue-boxed region views are shown in the right panel. (F) Representative z-axis slice of structural imaging of dendrite and spine
with a 180 pm x 180 pm x 150 pm volume (100 planes, 0.35 pm/pixel in x and y, 1.5 pm/pixel in z) in a mouse expressing GFP. Left, the original
imaging data without AO as low-SNR image. Middle, the same image denoised with SelfMirror. Right, imaging data with AO as a high-SNR reference.
Magnified views of the blue-boxed region at multiple axial locations are shown in the bottom panel. Axial location of 35 pm corresponds to the current
frame. Scale bars, 25 pm for the whole FOV and 10 pm for magnified views.

that SelfMirror is not limited to a specific noise model but thoracoabdominal CT images: this dataset presented a chal-
can effectively handle noise in various imaging techniques. lenge due to the inherent noise limitations of CT scans, and
Two datasets were employed for evaluation. (1) Human SelfMirror was tested on a pair of low-SNR and high-SNR
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Fig. 5. Denoising structural imaging data from multiple fluorescent microscopies. (A) Visualization of representative z-axis slices (top) and
y-axis slices (bottom) from left, noisy data, middle, corresponding SelfMirror denoised data, and right, high-SNR data of Penicillium. The pixel
intensity profiles of the blue- and white-dashed lines are inserted on the left bottom of the images, respectively. Scale bars, 20 pm. (B) Magnified
views of the blue- and yellow-boxed regions in (A) at multiple axial locations. Scale bars, 2 pm for all images. (C) Box-and-whisker plot showing
PSNR and Pearson correlation coefficient for z-axial slices before and after SelfMirror denoising; high-SNR reference data were used as the ground
truth for calculation. A two-sided paired-sample #test is used, NV = 129, which represents the number of planes along the z-axis (****p < 0.0001).
(D) STD projection (top) and max projection (bottom) of vessels of a mouse cortex for the raw noisy data (left) and corresponding images using
SelfMirror (right). Scale bars, 30 pm. (E) Example frames in three-axis planes (top, z-axis; bottom left, y-axis; bottom right, x-axis) of the intestine of
a mouse embryo after expansion for the original noisy data (left) and corresponding denoised image using SelfMirror (right). Scale bars, 30 pm.

volume images acquired with different CT scan settings. 3D-EM offers exceptional detail, it can also be susceptible
(2) 3D-EM images of the mouse cortex: this dataset involved to noise artifacts. The qualitative visualization of the
high-resolution 3D-EM images of the mouse cortex. While thoracoabdominal CT (Fig. 6A, supplementary Fig. S13 in
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Fig. 6. Denoising multiple volumes from multiple imaging modalities. (A) Representative slice from low-SNR (left), SelfMirror denoised
(middle), high-SNR (right) CT volumes of human thoracoabdominal body. (B) Low-SNR (left) and SelfMirror denoised (right) error maps with
high-SNR image in (A). Error maps are colored with a plasma bar. (C) Box-and-whisker plot showing Pearson correlation coefficient (left) and
structural similarity index (right) of axial slices. A paired-sample #-test is used, NV = 560, which represents the number of planes along the z-axis
(***p < 0.0001). (D) Example xy plane (left) and yz plane (right) frames of a mouse somatosensory cortex layer 4 from a 3D-EM volume

93 pm x 60 pm x 93 pum. Scale bars, 10 pm.

Ref. [38], and Visualization 8) and cortex 3D-EM (Fig. 6D,
Figs. S14, S15 in Ref. [38], and Visualization 9) revealed
a significant reduction in noise and an overall enhancement
of signal intensity in the volumetric data processed by
SelfMirror. The absolute error maps to the high-SNR reference
showed that our SelfMirror denoised image has a smaller differ-
ence to the high-SNR reference (Fig. 6B and supplementary
Fig. S13 in Ref. [38]). For the quantitative evaluation of
SelfMirror with the CT dataset, the SSIM and Pearson corre-
lation coefficients for each plane along the z-axis were calcu-
lated (Fig. 6C). The average SSIM (0.71 £ 0.043) of
SelfMirror shows more than 22% increment compared to
low-SNR images (0.58 £ 0.050), and the average Pearson
correlation coefficients increase to 0.99 & 0.002 by Self-
Mirror from 0.97 % 0.007 of low-SNR images. The successful
denoising of CT and 3D-EM images, alongside the previous
demonstrations with fluorescence microscopy, underscores
the broad applicability of SelfMirror across diverse imaging
modalities. Its ability to function independently of specific
noise model assumptions makes it a valuable tool for research-
ers working with various imaging techniques in biological
research.

3. DISCUSSION

In summary, SelfMirror is based on deep self-supervised learn-
ing for spatial enhancement of diverse imaging datasets. It cap-
italizes on the inherent property of biological tissues: their
structures generally change smoothly and continuously across
space. This core principle empowers SelfMirror to be readily

adaptable to a wide range of biological samples and imaging
modalities. Examples include multiphoton imaging, confocal
microscopy, and even expansion microscopy. The limitation
of SelfMirror lies in the basic assumption that the adjacent sli-
ces in the z-axis of the volume image have high similarity. If the
z interval between captured slices is too large to maintain this
similarity, SelfMirror would produce bias and over-smoothed
denoising results, and its performance may degrade (supple-
mentary Figs. S4-S6 in Ref. [38]). Therefore, when determin-
ing the spacing between z-slices, the step size should be made as
small as possible to ensure a sufficiently high level of similarity
between adjacent slices. In our experimental validation of the
SelfMirror principle, it was demonstrated that datasets employ-
ing z intervals below 6 pm achieved satisfactory denoising per-
formance across specimen scales ranging from 2 to 30 pm.
Notably, exceptional noise reduction efficacy was observed
in datasets with z intervals under 4 pm, with SNR improve-
ments exceeding threefold compared to original noisy stacks
(supplementary Fig. S4 in Ref. [38]).

Since SelfMirror does not make specific assumptions about
the noise model present in different imaging modalities,
retraining the model might be necessary to achieve optimal re-
sults. This becomes particularly important when factors like
imaging parameters, sample types, or modalities change.
Additionally, it is also worth noting that SelfMirror is specifi-
cally tailored to address zero-mean stochastic noise, which is a
common type of noise in fluorescent imaging data. However,
the method may not be as effective in dealing with determin-
istic artifacts, such as those caused by motion, photobleaching,
or fixed-pattern noise. The presence of significant drift artifacts
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in imaging datasets primarily induced by physiological motions
like respiration and cardiac activity may compromise inter-slice
continuity. This disruption compromises the denoising efficacy
of SelfMirror, resulting in bias and oversmoothing artifacts in
drifted regions. To mitigate this limitation, we recommend pre-
requisite non-rigid registration using the Image] [43] prior to
applying our denoising framework (supplementary Fig. S16 in
Ref. [38]). And the computational reconstruction involved in
techniques such as CT may introduce artifacts and modify the
noise distribution, potentially deviating from the ideal zero-
mean stochastic noise assumption. These factors do indeed
pose challenges to the performance of our SelfMirror method,
as we can see that certain structured noise patterns, such as
radial noise artifacts, remain in the denoised images while
full-dose CT suffers less of these patterns. These artifacts often
require more specialized approaches or additional preprocessing
steps to be effectively mitigated. Despite this, our comparative
studies indicate that SelfMirror consistently outperforms other
methods in CT denoising.

The successful application of SelfMirror for denoising CT
and 3D-EM images demonstrates its versatility beyond fluo-
rescent imaging data. This is a significant advancement, as
these imaging modalities often involve biological samples sus-
ceptible to radiation exposure or electron beam damage. By
effectively denoising such data with SelfMirror, researchers
can potentially reduce the required radiation or electron
beam dose, minimizing potential harm to the samples while
maintaining image quality. Encouragingly, training Self-
Mirror can be completed within half an hour, and subsequent
predictions for a 512 x 512 x 200 pixel volume can be made
within a minute on an NVIDIA RTX 3090 GPU, which fa-
cilitates its general usage in many laboratories with common
desktop settings. Overall, SelfMirror’s self-supervised learn-
ing scheme, coupled with its robustness in noise suppression
and signal reconstruction, positions it as a versatile tool for a
wide range of image data processing tasks. We expect that its
core strategy, learning the statistical relationships between
neighboring similarities, will not only enhance image denois-
ing but also be adapted to process a broader spectrum of bio-
logical data.

4. METHODS

A. Network and Training Details

We adopted the 3D U-Net architecture as the backbones and
turned them into a self-supervised network (Fig. 1A). The net-
work is composed of two 3D encoders, a bottom block, and
two 3D decoders with three skip connections from the encoder
blocks to the decoder blocks. Each 3D encoder block consists
of two 3 x 3 x 3 convolutional layers, followed by a ReLU ac-
tivation without batch normalization, with a final 2 x 2 x 2
max pooling with strides of two to downsample the feature
maps. The bottom block is similar to the encoder without
downsampling. And each 3D decoder block contains two
3 x 3 x 3 convolutional layers, followed by a ReLU activation
function, with a final 3D nearest interpolation to upsample
the feature maps. The 3D encoders form a contracting path
to encode the input to high-dimensional space. Then the 3D
decoders construct an expanding path to decode the high-

dimensional representation to output the same shape as the
input. In the training process, as illustrated in Fig. 1A, the
image stack is split into two sub-stacks: one consisting of
odd-numbered slices and the other of even-numbered slices.
Each sub-stack is fed into a separate but identical network
for training. A random shuffle block—rotate, flip, or swap—
is applied for data augmentation to reduce overfitting. The
parameters of the two networks are shared, in this way, by being
encoded into the shared learnable network; the separated spatial
information can interact and make the network more efficient.
The feature maps output from the bottom block and the
decoder blocks of each network, together with the final output
of the network, participate in the optimization of the entire
training; thus, the loss function of SelfMirror contains two
parts: feature map loss Ly, and image loss Z;,,:

1< C i i
Ly, = ;Z;(udg -dsll, + Ny - 451,

L, =allf(X) - Xll, + A -l f(X) - X, (7)

where &% and 4’ represent the feature maps output from the
decoders of each network, i € (1,7); 7 is the number of the
decoder blocks. f* represents the SelfMirror network, X and
X, are the input and the target sub-stacks randomly shuffled
from the noisy stack, respectively, and a denotes the hyperpara-
meter and is set to 0.5. || ||2 and ||||1 are the L, norm and Z;

norm, respectively. During the training, the ratio between the
feature map loss and the image loss was set to 1:2 to balance
their contributions. The model was trained using 3D patches,
each with a spatial resolution of 64 x 64 x 64 pixels. Network
optimization was conducted with the Adam optimizer, employ-
ing a fixed learning rate of 1x 1074 The training process
spanned 20 epochs, with each epoch encompassing a complete
pass through all available patches. To facilitate detailed monitor-
ing of the training dynamics, loss values were recorded after each
gradient update. All training experiments were performed using
PyTorch 2.0.1 and CUDA 11.8, executed on an NVIDIA RTX
3090 GPU. In the inference stage, the whole noisy stacks would
be fed into the trained SelfMirror model, for inference, without
the need to split them into two separate sequences (Fig. 1B).

B. 3D Imaging Data Simulation

We utilized simulated structural fluorescent imaging data to
quantitatively evaluate the performance of SelfMirror and other
SOTA methods for comparisons. Our simulation pipeline fol-
lowed a two-step process to generate the datasets. First, we syn-
thesized noise-free morphological imaging volumes, which
served as the ground truth for our experiments. We adopted
the in silico NAOMIi [39] to obtain these noise-free volumes.
The simulator was originally designed for simulating two-
photon calcium imaging data. We modified the codes to create
realistic morphological fluorescent imaging datasets with fluo-
rescently labeled neuron somata, axons, and dendrites. Next,
the simulated data were corrupted with different levels of mixed
Poisson-Gaussian noise, which is dominant in fluorescent im-
aging [11], to obtain different imaging SNR volume datasets.
Poisson sampling on noise-free images was first performed to
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simulate the content-dependent Poisson noise, then Gaussian
noise was added to these data, and Poisson noise was set as the
dominant noise source. We created eight different SNR
datasets from low to high SNR and used them in the paper
for the performance evaluation of our SelfMirror and other
methods.

C. In vivo Two-Photon 3D Imaging of Mouse Brain

All experiments were supported by the Animal Care and
Use Committee of Nankai University, following the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

For single neuronal imaging, mice were obtained from
Tianjin Medicinal University. In utero electroporation surgery
was performed to transfect layer 2/3 progenitor neurons in
embryonic day (E) 15.5 embryos. During the procedure,
the pregnant mice were anesthetized, the uterine horns were
carefully exposed, and approximately 1 pL of a buffer solution
was pressure-injected into the right lateral ventricle of each
embryo using a pulled-glass pipette. This buffer solution
contained 1.2 pg/pL SEP-GluAl and myc-GluA2 plasmid,
0.3 pg/puL Dsred2 plasmid, and a trace amount of Fast
Green (Sigma) to aid visualization. Then, the 3 mm tweezer
electrode of the electroporator was positioned to target the so-
matosensory cortex, and five pulses of 35 V (50 ms on, 950 ms
off, 1 Hz) were delivered to the embryos. Following the electro-
poration procedure, the embryos were carefully returned to the
maternal abdominal cavity, and the abdominal wall muscles
and skin were sutured. Once the pregnant mice recovered from
anesthesia, they were placed back in their cages and closely
monitored, with ample water and food provided. At 4 weeks
after the birth of the offspring, males and females were sepa-
rated into different cages. At 8 weeks of age, craniotomy surgery
was performed for imaging.

For neuronal population imaging, mice were genetically
modified to express EGFP using AAV transfection. During
the procedure, mice were first anesthetized with an isoflur-
ane-oxygen mixture (1.5% isoflurane/O,, volume ratio) and
given the analgesic buprenorphine (SC, 0.3 mg/kg). Next, virus
injection was performed using a specialized glass pipette with a
45° beveled tip and a 15-20 pm opening. This pipette was
filled with mineral oil and loaded with the viral solution using
a plunger controlled by a hydraulic manipulator; 20-30 nL of
AAV-hSyn-EGFP-containing solution (2 x 10" infectious
units/mL) was carefully injected into a targeted region of
the cortex. To prevent the viral solution from leaking back
out after injection, the pipette was left in the brain for over
15 min and then the plunger was withdrawn (1 nL in volume)
before the pipette was pulled up. After that, the skin was
sutured and mice recovered from anesthesia. Following the
procedure, the mice were placed back in their cages and closely
monitored, with ample water and food provided. Craniotomy
surgery was performed for imaging at 2-3 weeks after AAV
transfection.

For cerebrovascular imaging, mice were injected with
DsRed2 fluorescent protein via the tail vein. The procedure
involved dilating the tail veins, disinfecting the injection site,
and carefully injecting the protein solution into one of the
lateral tail veins using a fine-gauge needle. Approximately
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100-200 pL of DsRed2 solution was administered per mouse.
After injection, the mice were monitored to ensure proper
recovery and the absence of any adverse effects.

For craniotomy surgery, mice were first anesthetized on a
heating pad with eye ointment covered. The scalp was then
carefully dissected to expose the skull. A custom-made record-
ing chamber was secured onto the skull using glue and dental
cement. Following a 20 min curing for the cement, a 3 mm
diameter cranial window was drilled using a trephine drill.
Next, the designated skull disc was removed with tweezers,
and the dura mater was carefully excised. Finally, a cover glass
was placed over the cranial window to protect the exposed brain
and maintain a sterile environment. After the surgery, the mice
were recovered from anesthetization, placed back in their cages,
and closely monitored, with ample water and food provided.
Post-surgery administration of anti-inflammatory agents con-
tinued for seven consecutive days for long-term imaging.
Then, two-photon imaging could be performed after a week
of recovery.

All imaging experiments were conducted using a two-pho-
ton microscope equipped with a Ti-sapphire laser (Mai-Tai
Deep See Spectra Physics). The excitation beam was focused
with a water-dipping objective (Nikon 40x ,0.80 NA). The
resulting backward-scattered signal emanating from the brain
tissue was gathered by the same objective lens and detected
with photomultiplier tubes (PMTs, Hamamatsu GaAsP
PMT). In single-neuron imaging experiments, SEP-GluAl
and dsRed2 were excited using 2 910 nm wavelength with power
output ranging from 15 to 100 mW directed to the back aper-
ture of the objective lens, according to the fluorescent expression
condition and imaging depth. The emitted fluorescence was sep-
arated by dichroic mirrors and filters (ET525/50m for green,
ET629/56m for red). The laser power was adjusted to a ratio
of 1:3 for images with low and high SNRs. In neuronal popu-
lation imaging experiments, the excitation wavelength was set to
920 nm with 15 to 100 mW and a 1:2 laser power ratio for low-
SNR versus high-SNR images. In cerebrovascular imaging ex-
periments, the excitation wavelength was set to 920 nm with
15 to 80 mW. During high-SNR imaging, careful power adjust-
ments were crucial to prevent photobleaching. All image stacks
were acquired at 512 x 512 pixels with a horizontal size of
0.66 pm/pixel in x and y directions.

D. Method Comparison

We conducted a comprehensive performance comparison of
SelfMirror against eight established denoising methods: DIP
[40], Noise2Noise (N2N) [11], Noise2Fast (N2F) [35],
Noise2Self (N2S) [30], Noise2Void (N2V) [29], Neighbor2-
Neighbor (Ne2Ne) [34], SUPPORT [36], and SN2N [41].
These methods were implemented using open-source codes
provided by the respective research publications. Each method’s
denoising model was trained and tested on the same datasets to
ensure a fair comparison. For methods originally designed for
two-dimensional images, we adapted the image stack by split-
ting it into a series of two-dimensional frames to match the
required input dimensions. Both training and inference were
performed on a frame-by-frame basis. We adhered to the
default training settings, including network architectures and
hyperparameters, for all methods to maintain consistency.
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E. Evaluation Metrics

To assess the effectiveness of various denoising methods, we
employed the following quantitative metrics. For an image
(or an image stack) x and its corresponding ground truth
(noise-free image) y, the metrics are defined as follows.

SNR quantifies the pixel-level discrepancy between the two
images on a logarithmic decibel scale; higher SNR values indi-
cate that the reconstructed image is closer to the original, mean-
ing better quality, which is formulated as

SNR(dB) = 10logyy " 8
(dB) = 10log;, P (8)

Peak signal-to-noise ratio (PSNR) is a widely recognized
metric for gauging the fidelity of image reconstruction. It quan-
tifies the difference between the two images and is expressed in
decibels; higher PSNR values indicate that the reconstructed
image is closer to the original, meaning better quality, which
is formulated as

©)

2
PSNR(dB) = 10log,, (max(x)>

mse

where max(x) indicates the maximum intensity value of x; mse
measures the mean square error between x and y, which is
defined as mse = E(x - y)?, where E represents the arithmetic
mean.

The Pearson correlation coefficient quantifies the linear cor-
relation between the intensity values of two images; higher
Pearson correlation coefficient values indicate that the recon-
structed image is closer to the original in terms of pixel intensity
and distribution, meaning better quality, which is formulated as

— E(x_/’lx)(y_ﬂy)

0.0,

4 (10)
where y.., p, and o,, 6, are the means and variances of x and y,
respectively.

SSIM measures the perceptual similarity between two im-
ages on a perceptual level, including luminance, contrast,
and structure; higher SSIM values indicate that the recon-
structed image is closer to the original, meaning better quality.
The definition is

(zﬂxﬂy + Cl)(zaxy + 62)
(uz + 15 + )0z + 05 +¢3)’

SSIM(x, y) = (11)

where 6, is the covariance of x and y. The two constants ¢; and

¢, are defined as ¢, = (b L)?> and 2 = (k,L)*> with
kl = 0.01, k2 = 0.03, and L = 65,535
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