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Abstract

In vivo transparent vessel segmentation is important to life science research. However, this task remains very challenging because of the
fuzzy edges and the barely noticeable tubular characteristics of vessels under a light microscope. In this paper, we present a new machine
learning method based on blood flow characteristics to segment the global vascular structure in vivo. Specifically, the videos of blood flow in
transparent vessels are used as input. We use the machine learning classifier to classify the vessel pixels through the motion features
extracted from moving red blood cells and achieve vessel segmentation based on a region-growing algorithm. Moreover, we utilize the mov-
ing characteristics of blood flow to distinguish between the types of vessels, including arteries, veins, and capillaries. In the experiments, we
evaluate the performance of our method on videos of zebrafish embryos. The experimental results indicate the high accuracy of vessel seg-
mentation, with an average accuracy of 97.98%, which is much more superior than other segmentation or motion-detection algorithms. Our
method has good robustness when applied to input videos with various time resolutions, with a minimum of 3.125 fps.
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Introduction

Vasculature assessment plays a significant role in various fields of
studies, including medical diagnoses (Francia et al., 2020), bio-
medical sciences (Yip et al., 2021), neuroscience (Li et al.,
2017), and micromanipulation (Arcese et al., 2013). Among the
various vasculatures, in vivo transparent vessels are a very special
kind and are common in frogs and fish larvae, for example,
see-through frogs, zebrafish embryos, and juvenile surgeonfish.
In vivo transparent vessels can be observed directly using a light
microscope, so researchers can observe the whole process of
angiogenesis and evaluate the arteriolar-to-venular ratio (Daien
et al., 2013; Seidelmann et al., 2016) to study vascular architecture,
cardiovascular development, disease and the effect of drugs with-
out complex preprocessing. Moreover, transparent vessels are
used in some biological micromanipulations, such as in vivo car-
dinal vein microinjection (Sun et al., 2021), in vivo cell tracking
(Menon et al., 2016), and blood flow velocity measurement
(Chan & Liebling, 2015), since they provide a clear microscopic
view to achieve real-time visual feedback.

It is important to obtain the blood vessel region, especially the
region of in vivo transparent vessels. Automated segmentation of
the vasculature provides crucial information, such as vessel

diameters, length, branching patterns and tortuosity, for quantita-
tive analysis and visualization, which greatly reduces the difficulty
and improves the efficiency of subsequent research. According to
the source of the vessels, vessel segmentation can be divided into
human vessel segmentation and animal vessel segmentation.

For humans, vessel imaging depends on the location of vessels
in the body. For example, laparoscopic ultrasound (LUS) is used
to visualize subsurface structures, including liver vessels, magnetic
resonance angiography (MRI) is applied to visualize brain vessels,
computed tomography (CT) aids in pulmonary vessel and renal
artery visualization, and a fundus camera captures retinal images.
Therefore, researchers have proposed a variety of vessel segmen-
tation methods for different types of vessels. Yan et al. (2020) pro-
posed an attention-guided deep neural network with multiscale
feature fusion for liver vessel segmentation. Phellan et al. (2018)
used the ranking orientation responses of path operators and mul-
tiscale vesselness enhancement filters to enhance brain vessels and
performed segmentation using a seed-based algorithm. Wang
et al. (2019) modeled each voxel by a second-order tensor to cap-
ture the intensity information and the geometric information for
renal artery segmentation. Xu et al. (2018) proposed the stage-
wise convolutional networks followed by an orientation-based
region-growing method for pulmonary vessel segmentation.
Unlike the above vascular images, retinal images are usually
color images. Retinal vessel segmentation methods in recent
years include a dedicated end-to-end matting algorithm to
retrieve vessel pixels in thin and tiny vessels (Zhao et al., 2019),
a split-based coarse-to-fine vessel segmentation network to detect
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thick and thin vessels separately (Ma et al., 2021), a combination
of a Hessian-based approach and an intensity transformation
approach to segment retinal fundus images in an unsupervised
way (Alhussein et al., 2020), and a recursive semantics-guided
U-shaped network to improve the connectivity of segmented
vessels (Xu et al., 2020). These methods exhibit great performance
in human vessel segmentation. However, human vessel images
are quite different from microscopic images of transparent
vessels. These methods are not suitable for transparent vessel
segmentation.

Animal vessel segmentation is usually used in disease and drug
research. Animals, such as zebrafish and mice, are genetically
modified or infected by viruses so that fluorescent vascular images
can be taken by two/multiphoton microscopy or confocal micros-
copy. To date, many efforts have been devoted to segmenting
fluorescence microscopic images of certain animal vessels. The
open-source software Fiji was applied to segment transgenic fluo-
rescent vasculature images (Schindelin et al., 2012; Kugler et al.,
2019). A dual ResUNet model was proposed to detect more infor-
mation for overlapping regions caused by an uneven distribution
of fluorescence intensities (Zhang et al., 2019). Ip et al. (2002)
described an automated technique for segmenting, tracking, and
identifying the tail vessels of zebrafish embryos using serial fluo-
rescent images. A framework was introduced in Feng et al. (2005)
for automatic segmentation and registration of different kinds of
blood vessels. Yang & Xu (2017) studied the recognition of zebra-
fish interstitial blood vessels based on Haar-like features and an
improved AdaBoost network model. Fluorescence microscopic
imaging has high contrast and a low signal-to-noise ratio
(SNR), but the process of fluorescence image acquisition is com-
plex and time-consuming. Moreover, the experimental animals
usually die after long-term fluorescence observation due to the
high intensity of lasers, which may affect follow-up research.

For transparent animals and embryos, such as zebrafish
embryos, it is more convenient to directly observe blood vessels
and blood flow through light microscopy. However, it is difficult
to segment transparent vessels by using a single microscopic
image. As shown in Figure 1a, the vascular boundaries cannot
be defined precisely due to the fuzzy edges and the barely notice-
able tubular characteristics. Therefore, a simple and automatic
segmentation method for in vivo transparent vessels can effec-
tively improve the efficiency of relevant research.

To the best of our knowledge, there have been few works on in
vivo transparent vessel segmentation to date. We discovered that
red blood cells (RBCs) in vessels are obvious when they are mov-
ing, and their motion trajectory indirectly represents the vascular
shape. Inspired by this, we present an in vivo transparent vessel
segmentation and identification method based on blood flow

characteristics, which only requires a short video of blood flow
under a light microscope. The basic idea of the proposed method
is to identify the transparent vessel pixels by the moving RBCs
using a special set of motion features and the adaptive nature of
machine learning. Specifically, the motion features are extracted
from the moving RBCs and used to train a machine learning clas-
sification model. Then, the vascular structure is generated based
on a region-growing algorithm, in which each vessel pixel is clas-
sified iteratively using a machine learning classifier. Furthermore,
the moving characteristics of the blood flow are utilized to distin-
guish between the types of vessels, that is, arteries, veins, and cap-
illaries. In the experiments, the segmentation result of the global
vascular structure is obtained with an average accuracy of 97.98%
for the specific application to zebrafish embryos.

The major contributions of the proposed method are summa-
rized as follows:

1) We achieve indirect in vivo transparent vessel segmentation by
analyzing the motion of RBCs in vessels. We only use short
videos of blood flow under a light microscope as the input
of segmentation and do not need to visualize the vessels labo-
riously by confocal microscopy, which makes the method
more practicable and user friendly than traditional fluorescent
segmentation methods. This is the first work that approaches
the difficulty of transparent vessel segmentation from this
perspective.

2) We design two flow-connectivity features coupled with two
vessel-connectivity features and several grey-level statistical
features for classification, inspired by the continuity of RBC
motion in the neighboring frames. The flow-connectivity fea-
tures provide motion distribution information on the RBCs,
which helps detect the motion of the slow-moving cells to fur-
ther identify the thin vessel pixels and suppress the back-
ground noise.

3) We classify the vessels as arteries, veins, or capillaries accord-
ing to the direction and magnitude of the velocity vectors in
the vessel regions. Due to the continuous motion, the change
in the direction and magnitude of the velocity vectors is con-
tinuous in one vessel but discrepant in different vessels,
enabling the separation of different blood vessels and further
distinguishing between their types. This work may assist in
research on specific vessels.

Materials and Methods

The main idea of the proposed method is to identify the vessel
pixels by observing moving RBCs using a special set of motion
features and the adaptive nature of machine learning. The method

Fi
g.

1
-
Co

lo
ur

on
lin

e,
Co

lo
ur

in
pr
in
t

Fig. 1. Example of transparent vessels. (a) Light microscope image of a part of zebrafish embryo vessels. (b) Ground truth of the corresponding vessel segment of (a).
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consists of three main steps: (1) optical flow calculation and
motion feature extraction, (2) vessel segmentation by region grow-
ing coupled with machine learning-driven pixel classification, and
(3) vascular-type identification based on the motion information.

Figure 2 shows the workflow of the proposed method. In the
first step, we calculate the dense optical flow of the moving
RBCs and then extract the motion features. The machine learning
classifier is trained and stored based on the features of the ground
truth. In the second step, the seed points of the region-growing
algorithm are selected automatically using two basic segmentation
methods. Then, we use machine learning classifiers to classify
each candidate pixel as a vessel or nonvessel pixel and conduct
region growing for vessel segmentation. In the last step, we iden-
tify the vessels according to the moving characteristics of the

blood flow and the position of the heart of the animals. In
Figure 2, the red arrows between the dashed boxes represent the
motion feature updated after each iteration in region growing.
The blue arrows show the data flow of the average optical flow
field, which will be reused further in seed point selection and
vascular-type identification. The green arrow indicates that the
segmentation results of the vascular structure are utilized as the
constraint for vascular-type identification.

Motion Feature Extraction

In the videos of blood flow, RBCs move fast and obviously in the
main vessels, while they move slowly and weakly in the capillaries
due to the vessel diameter and the number of circulating RBCs.
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Fig. 2. Flowchart of the proposed method.
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Thus, capillary segmentation is much more difficult than main
vessel segmentation. Motion has the property of continuity and
regularity in the interframe of the video, that is, there is a higher
probability that the pixels, which are neighbors of the moved pix-
els, belong to the moving object. Therefore, motion connectivity
can assist in detecting the moved pixels, especially the pixels
with slow motion. In this paper, we calculate the instantaneous
optical flow field of every two consecutive frames in the video
using the dense optical flow algorithm Farneback (Farnebck,
2003) to obtain motion velocity vectors of all pixels and calculate
the average optical flow field for background noise suppression.
This average dense optical flow field contains the total motion
information of the video. Based on the optical flow field, we
design the flow-connectivity features to identify the moved pixels,
that is, the vessel pixels.

In region-growing-based segmentation algorithms, connectiv-
ity is a central principle. However, region growing alone cannot
produce sufficiently accurate segmentation results. In this paper,
we use redesigned region growing coupled with machine learning-
driven pixel classification (Rodrigues et al., 2020) to improve the
adaptivity. The pixels belonging to vascular structures are updated
in time as the per-pixel classification process advances.
Classification occurs in a region-growing fashion, which also
improves the efficiency and accuracy. In addition, Rodrigues
et al. (2020) indicated the good performance of vessel-
connectivity features combined with grey-level pattern informa-
tion in classification. Hence, we modify these features and classify
the vessel pixels along with the flow-connectivity features.

Three kinds of features, the flow-connectivity features, vessel-
connectivity features, and grey-level features, are combined to
provide an information-rich vector for pixel classification. The
flow-connectivity features provide information that defines
whether a pixel is near another moving pixel using the average
optical flow field. The vessel-connectivity features help detect
the possible vessel pixels in the neighborhood of the vessels
using the binary image of the vascular structure. The grey-level
features assist in identifying border pixels using the visualized
image of the average optical flow field. We provide details of flow-
connectivity features and briefly introduce the information of
vessel-connectivity features and grey-level statistical features as
follows.

1) Flow-connectivity Features (Two Features): Two flow-connectivity
features are extracted from the average optical flow field of the
input video, including an immediate flow-connectivity feature
and a radial flow-connectivity feature. The immediate flow-
connectivity feature focuses on the 8 neighbors of the current
candidate pixel and uses a probability function to determine
the number of pixels whose velocity vectors are similar to the
motion vectors. The immediate flow-connectivity feature of the
current candidate pixel Ii,j is defined as

fi(Ii,j) = 1, if Pi(Ii,j) . Ti,

0, otherwise,

{
(1)

where Ti is the threshold for selecting the candidate motion vec-
tor in the 8 neighbors with high probability Pi(Ii,j). Pi(Ii,j) is given
by

Pi(Ii,j) = eMi,j − 1
Normi

, (2)

where Normi is a normalizing constant used to ensure that the
probability does not exceed 1, and

Mi,j =
∑
m,n[k

(isSimilar (vi,j, vi+m,j+n)> isVessel(Ii+m,j+n)), (3)

where k denotes the 8 neighbors of the current candidate pixel Ii,j,
isSimilar(vi,j,vi+m,j+n) determines whether two velocity vectors are
similar, and isVessel(Ii+m,j+n) determines whether pixel Ii+m,j+n

belongs to the vessel, that is, whether the velocity vector of Ii
+m,j+n is a motion vector. They are calculated as follows:

isSimilar(v1, v2) =
1, if ( cos (v1, v2) . Tcos)

>(||v1| − |v2|| , Tspeed · |v2|),
0, otherwise,

⎧⎨
⎩ (4)

isVessel(Ii,j) = 1, if Ii,j == 255,
0, otherwise,

{
(5)

where Tcos is the angle threshold and Tspeed is the magnitude ratio
threshold of two vectors.

The radial flow-connectivity feature focuses on a circular
neighborhood of the current candidate pixel, which aims to con-
sider disconnected moving cells. The radial flow-connectivity fea-
ture of the current candidate pixel Ii,j is defined as follows:

fr(Ii,j) = 1, if Pr(Ii,j) . Tr,

0, otherwise,

{
(6)

where Tr is the threshold used to select the candidate motion vec-
tor in the circular neighbors with a high probability Pr(Ii,j). As
defined in equation (7), Pr(Ii,j) uses the logarithmic function
instead of the exponential function in equation (2) to calculate
the similarity because a broader sliding region and more candi-
date pixels easily cause the overflow of the results achieved by
the exponential function. Similarly, Normr is also a normalizing
constant used to ensure that the probability does not exceed 1,
and Mi,j is calculated by the same formula, that is, equation (3),
of which k denotes the circular neighbors of Ii,j.

Pr(Ii,j) =
ln (Mi,j + 1)

Normr
. (7)

2) Vessel-connectivity Features (Two Features): Two vessel-
connectivity features are extracted from the seed point image
processed during region growing. Similar to the flow-
connectivity features, vessel-connectivity features include an
immediate vessel-connectivity feature and a radial vessel-
connectivity feature, which consider 8 neighbors and the cir-
cular neighborhood of the current candidate pixel. The imme-
diate vessel-connectivity feature is defined as

vi(Ii,j) = 1, if Pi(Ii,j) . Ti,

0, otherwise,

{
(8)

where Pi(Ii,j) is calculated by equation (2), of which Mi,j is
redefined as

Mi,j =
∑
m,n[k

isVessel(Ii+m,j+n). (9)
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The radial vessel-connectivity feature is defined as

vr(Ii,j) = 1, if Pr(Ii,j) . Tr,

0, otherwise,

{
(10)

where Pr(Ii,j) is calculated by equation (7), of which Mi,j is given
by equation (9).

3) Grey-level Statistical Features (53 Features): Given the visual-
ized image of the average optical flow field, the grey-level fea-
tures are obtained from various image processing techniques
including the (1) the difference of Gaussians filter (Cho
et al., 2007) (four features), (2) the Hessian matrix (Lorenz
et al., 1997) (ten features), (3) the Frangi filter (Frangi et al.,
1998) (three features), (4) the Laplacian filter (İlk et al.,
2011) (three features), (5) intensity statistics, including
mean, max, min, and median values (five features), (6) aniso-
tropic diffusion (Perona & Malik, 1990) (two features), (7)
morphological opening and closing (Vincent, 1994) (six fea-
tures), (8) image gradients (three features), (9) the Kuwahara
filter (Bartyzel, 2016) (two features), (10) the Gabor filter
(Kim et al., 2018) (four features), (11) high-order derivatives
(Oszust, 2018) (four features), (12) entropy (Rajalaxmi &
Nirmala, 2014) (three features), (13) the Sobel filter
(Yaacoub & Daou, 2019) (two features), (14) the shake effect
(Flusser et al., 2016) (one feature), and (15) the enhancement
filter (Dong et al., 2008) (one feature). As most of these fea-
tures are well known, we refer readers to the references within.

Prior to segmentation, the machine learning classifier is
trained to generate a predictive model using the motion feature
vectors extracted from the videos with the ground truth, including
manually annotated binary images (i.e., each pixel belongs or does
not belong to a vessel), the average optical flow field and visual-
ized images. The classifier learns to associate specific feature pat-
terns with labels during training and uses this information to
produce a label when it is unknown, that is, in the testing
phase. Because of the good adaptation to the specifics of the data-
sets, a random forest (Witten et al., 2011) is chosen as the
machine learning classifier to conduct the experiments.

Vessel Segmentation

We use the extracted motion features to conduct vessel segmenta-
tion. As previously described, we classify the candidate pixels
using the per-pixel machine learning classifier in a region-
growing fashion. Each pixel is classified as either a vessel pixel
or nonvessel pixel, where all the classification results form a
binary image, representing the final segmentation of the vascular
structure.

Initially, we obtain the seed points of region growing in three
steps. First, the visualized image of the average optical flow field is
segmented using DenseUNet (Li et al., 2018; Cai et al., 2020;
Guan et al., 2020), a widely used image segmentation network
with high precision, to achieve a preliminary binary result ID.
The binary image ID has good connectivity. However, the large
differences in vessel diameters and the numbers of moving
RBCs between the main vessels and the narrow vessels make
the motion velocities significantly different in vessels of different
sizes. Due to the limitation of visualization techniques, the visual-
ized image may only provide information about the main vessels

and ignore capillaries. Hence, the binary image ID lacks precision,
especially in capillaries. We apply background subtraction based
on the Gaussian mixture model (Zivkovic & Heijden, 2006) to
the input video as the second step to accumulate the transient
motion change. We achieve another preliminary binary result
IB, which contains part of the capillary structure. Although IB
lacks continuity, it provides more detailed basic information of
the narrow vessels. Last, after removing some slightly connected
components, binary images ID and IB are added to obtain the
seed point image IS, where the pixels in the connected compo-
nents are selected as the seed points.

Given the selected seed points, we extract the entire vascular
structure through a region-growing method. S is the position set
of the vessel pixels, that is, seed points. The unknown pixels in
the 8 neighbors of the pixels in S are chosen as the candidate pix-
els for classification.

The detailed information of set Si in the ith (i≥ 1) iteration is
described as

S0 = {(x, y)|(x, y) [ IS}, (11)

Si= Si−1 < {(x, y) | Classifier(v(x, y)) == 1,
||Si−1, (x, y)|| ≤

��
2

√
},

(12)

where S0 contains the initially selected seed points from seed
point image IS. At the ith iteration, each candidate pixel is chosen
from the 8 neighbors of vessel pixels in set Si-1. The motion fea-
ture vector v(x,y) of the candidate pixel is extracted based on the
previous classification information in its vicinity and is fed into
the machine learning classifier to decide whether this pixel is a
vessel pixel. If the classification result of pixel(x,y), Classifier(v
(x,y)), is equal to 1, it will be added into set Si.

Set S is updated after each iteration in region growing, which
makes the flow-connectivity features and the vessel-connectivity
features update in time as well. This means that if the candidate
pixel is classified as a vessel pixel, the vessel pixel contribution
in the neighborhood will be updated and then affect the evalua-
tion of the connectivity features in the next iteration of motion
feature extraction. This updated pixel information can signifi-
cantly benefit subsequent pixel classification in the vicinity.

The classification process starts at iteration 0 from set S0 con-
taining the initially selected seed points and is terminated when
all the pixels in the image are classified in the previous iteration.
Finally, the segmented result, IR, is obtained. The implemented
pseudocode is described in Algorithm 1.

Algorithm 1. Vessel Segmentation

Inputs: The blood flow video V

1:

for each two frames in V do

2:

Finstant← calculate the instantaneous optical flow field using the
Farneback algorithm

3:

ArrayList← ArrayList ∪Finstant

4:

end for
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5:

Favg← calculate the average optical flow field using ArrayList

6:

Iavg← visualize Favg using the Munsell color system

7:

ID← segment Iavg using DenseUNet

8:

IB← accumulate the background subtraction results of V

9:

IS← ID ∪ IB

10:

S0← IS

11:

Initialize the motion features of all pixels using Favg, Iavg, and S0

12:

Repeat

13:

Si � Si−1 < {(x, y) | Classifier(v(x, y)) == 1, ||Si−1, (x, y)|| ≤
��
2

√
}

14:

Update the motion features of each pixel using Favg and Si

15:

Until all pixels in Is are classified

16:

IR← S > 0

Output: The segmented vessel image IR

Vascular-Type Identification

After vessel segmentation, we distinguished the types of vessels
from the entire vascular structure of the animals. Motion has
the property of continuity and regularity in time. Notably, motion
is usually continuous in the inner moving object but varies
between different objects. This means that the velocity of moving
cells changes continuously in the same vessel and varies consider-
ably in different vessels. This motivates us to identify different
types of vessels, including arteries, veins, and capillaries, based
on the average optical flow field, which contains the motion infor-
mation of the RBCs in all the vessels.

Inspired by the principle of manual identification, we use the
location of the heart of animals as a reference to distinguish
between arteries and veins. It is easy to recognize the heart in
blood flow videos because of its powerful beating. The heart is
the endpoint of the main vascular structure. Once the heart is
located, the arteries and veins in the videos can be identified.
The method of vascular-type identification is as follows. Taking
the zebrafish embryo as an example, Figure 3 shows the workflow.

First, the visualized image of the average optical flow field is
converted to the linear HSV color space from the nonlinear
RGB color space (Fig. 3c), as shown in Figure 3d. The only
data within the vascular structure are retained according to the
vessel segmentation results, as shown in Figure 3e. By limiting
the calculation range, we reduce the interference of the nonvascu-
lar region and improve the speed and accuracy of recognition. The

continuous change in the colors in the HSV color space indirectly
indicates the movement of the RBCs with continuous changes in
velocity, which helps identify individual vessels.

Second, we extract the S channel of the HSV image, as shown
in Figure 3f, and calculate its histogram of saturation. It is obvious
that the speed of the blood cells in the capillaries is much lower
than that in the main vessels. Hence, the saturation of the capil-
lary area is clearly lower than that of the main vessels in the visu-
alized image. We take the minimum saturation value between the
peaks of the histogram as the threshold and mark the pixels with
saturation values below the threshold as capillary pixels, so the
capillaries are identified first.
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Fig. 3. Workflow of the proposed vascular-type identification method applied to the
zebrafish embryo. (a) Local image of a zebrafish embryo under a light microscope; (b)
vascular structure of (a); (c–d) visualized image of the average optical flow field of (a)
in RGB color space and HSV color space, respectively; (e) HSV image of (d) within the
vascular structure; (f) visualized image of the S channel of (e); (g) visualized image of
the H channel of (e); (h) vascular-type identification result (red: artery; green: vein;
and blue: capillary); and (i) global stitching image of the zebrafish embryo under a
light microscope (the red bounding box represents the position of the heart, and
the blue bounding box represents the local region of (a)).
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Third, we extract the H channel of the HSV image, as shown in
Figure 3g, to calculate a histogram of its hue values and take the
two minimum values between the three peaks as double thresh-
olds, α and β (0 < α < β < 180). Because arterial blood flows
from the heart and venous blood flows into the heart, the RBCs
in the two main vessels flow in opposite directions, which
makes the visualized vessels display marked differences in color
between the two main vessels. Hence, the distribution of hue val-
ues helps distinguish between the two main vessels. The pixels
with hue values between α and β are denoted pixels belonging
to one main vessel, and the remaining pixels belong to the
other main vessel.

Finally, the aorta and cardinal vein are identified from two
main vessels by calculating the angle γ between the optical flow
vector in the main vessel and the position of the heart. The
main vessel with vectors pointing toward the heart (γ < 90°) is
the cardinal vein, and the other vessel is the aorta. Figure 3i
shows the global stitching image of the zebrafish embryo under
a light microscope, where the red bounding box represents the
position of the heart and the blue bounding box represents the
local region to be processed, as shown in Figure 3a. The heart
is located on the upper right of the target region. Figure 3h
shows the final vascular-type identification result, where the red
and green vessels represent the aorta and cardinal vein, respec-
tively, and the blue vessels represent the capillaries.

Results

Zebrafish embryos are a widely used vertebrate model organism
with transparent vessels and high fecundity. In this paper, we
observed the blood flow of zebrafish embryos and conducted
quantitative and qualitative transparent vessel segmentation and
identification experiments.

Sample Preparation and Video Acquisition

We conducted the experiments with the embryos 60 h post-
fertilization (hpf), which were cultured in PTU medium with
less melanin and cleaner fields. The zebrafish embryos were pre-
pared according to protocols and procedures approved by the
Animal Experimental Committee of Nankai University (No.
2008) and were operated on in accordance with the NIH Guide
for the Care and Use of Laboratory Animals.

The videos of zebrafish embryo blood flow were acquired by a
micromanipulation system, as shown in Figure 4. We used a
motorized inverted microscope (TiE, Nikon) with a 10× objective
(NA: 0.25) for observation. The zebrafish embryo was laid on its
side in a Petri dish and carried into the field of view of the micro-
scope by a motorized X-Y stage (ProScan III, Prior) with a motion
range of 120 mm × 80 mm and a positioning resolution of
0.05 μm. A high-speed camera (PHANTOM, MIRO C110) was
mounted on the microscope to capture videos of blood flow.

We first moved the motorized stage until the head of the embryo
appeared in the field of view and focused on the RBCs in the vessels.
Then, we captured a video of the blood flow in the current field of
view for approximately 2 s by a high-speed camera at 50 fps. We
moved the motorized stage in the direction from the head to the
tail of the embryo and captured the video in each part of the
embryo. Then, a long video was created and saved locally. We cut
short videos from the whole original video for convenience. The
short videos show the blood flow of different parts of the zebrafish
embryo, constituting a complete vascular image.

We took a total of four complete videos on the blood flow of
the zebrafish embryos. Seven to nine short videos were obtained
for the local vessel parts of each zebrafish embryo after clipping.

Training of the Machine Learning Classifier and DenseUNet

There is currently no public database for zebrafish embryo blood
vessels, so we used the binary images segmented manually by
experienced biologists from the videos of blood flow as the ground
truth. In the binary images, all the vessel pixels were classified into
one of three classes: the aorta, cardinal vein, and capillary. The
average optical flow field of the corresponding video was calcu-
lated using the Farneback optical flow algorithm and visualized
by the Munsell color system.

For random forest classifier training, the classifier was trained
using a ground truth binary image, the average optical flow field,
and its visualized image of the video of zebrafish embryo blood
flow. A single set of training data had approximately 164,000 fea-
ture vectors and was deemed sufficient for training, as there was
not much variation among different videos.

DenseUNet was implemented for optical flow field image seg-
mentation using the Keras open-source deep learning library.
Because the visualized image of the average optical flow field directly
showed the typical vascular branching structure, such as retinal ves-
sel images, and did not involve the unique characteristics of the
individual animals, we trained DenseUNet by using the retinal fun-
dus image benchmark DRIVE (Staal et al., 2004). DRIVE consisted
of 40 retinal images, where 20 images were marked as the training
set and testing set. We trained DenseUNet with RMSprop, with an
initial learning rate of 10−3 and an exponential decay of 0.995 after
each epoch. The network was initialized using the Xavier method.

Training and deployment of DenseUNet were conducted on a
PC equipped with an Intel i7 CPU with 512 GB of main memory
and an NVIDIA GeForce GTX 1080Ti GPU. The other parts of
the proposed method, including the random forest classifier,
were implemented in C++ on a desktop PC with an Intel(R)
Core (TM) i7-8700 CPU and 16.0 GB of RAM. The source
code can be found in the supplementary material.

Evaluation Metric

To evaluate the performance of the proposed method, seven eval-
uation metrics were calculated, including accuracy (ACC),
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Fig. 4. Micromanipulation system setup.
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precision, recall, harmonic mean F-measure (F1), Jaccard similar-
ity (JS), Matthews correlation coefficient (MCC), and area under
the receiver operating characteristic (ROC) curve (AUC). The
ACC is used to measure the proportion of correct predictions.
Precision means that the true positive sample accounts for the
proportion of all positive samples, and recall measures the pro-
portion of positives that are correctly identified, while F1 is used
to balance precision and recall. The MCC is a measure of the
quality of a binary classification and is suitable for vessel images
with imbalanced amounts of foreground and background pixels.
The JS evaluates the similarity between the ground truth and
the segmentation result. The AUC is used to measure the perfor-
mance of a binary segmentation method. These metrics are
defined as follows:

ACC = TP+ TN
TP+ TN+ FP+ FN

, (13)

Precision = TP
TP+ FP

, (14)

Recall = TP
TP+ FN

, (15)

F1 = 2× Precision× Recall
Precision+ Recall

, (16)

JS = |GT> SR|
|GT< SR| , (17)

MCC = TP× TN− FP× FN�����������������������������������������������
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

√ , (18)

where TP is the number of correctly segmented foreground pixels,
TN represents the number of correctly segmented background
pixels, FP is the number of incorrectly segmented foreground pix-
els, FN is the number of true foreground pixels that are not seg-
mented as such, GT is the ground truth, and SR is the
segmentation result.

Segmentation Results

We examined the segmentation performance of our method on
the full image level to evaluate the overall performance in both
the main vessels and the narrow vessels. For each zebrafish

embryo, we reused the proposed method on each short video of
blood flow and stitched all the segmentation results into one global
image based on SIFT to obtain the global vascular structure.

Table 1 shows the quantitative performance of the proposed
method on four zebrafish embryos. The average accuracy of all
four zebrafish embryo vessel structures is 0.9798. Meanwhile,
the method achieves both a high F1 value of 0.8365 and a recall
rate of 0.8308 on average. The average MCC is more than 0.82,
and the average JS is 0.72. This means that the vessel structure
in the segmented images produced by our method may be very
close to the ground truth.

Figure 5 shows the qualitative global segmentation results. The
magnified views are displayed beside the segmentation results in
Figures 5b and 5c for more local details. Compared with the
ground truth, the key structures of the aorta and cardinal vein
of the zebrafish embryos are fully segmented, as well as most
parts of the capillary structures. The segmentation results have
good continuity and integrity and show the obvious branching
feature of vessels.

Validation of Vascular Types

According to the segmentation results of the zebrafish embryos,
we experimented with the proposed vascular-type identification
method and performed classification validation on three types
of vessels, that is, the aorta, cardinal vein, and capillary, from
both quantitative and qualitative perspectives.

Tables 2–4 show the performance measures evaluated for the
aorta, cardinal vein, and capillary, respectively. The average accu-
racy of the aorta and cardinal vein is both more than 0.98.
Meanwhile, the capillary has an average accuracy of 0.9697.
However, the average recall values of the cardinal vein and capil-
lary are 0.3349 and 0.4311, respectively. These evaluation data
indicate that the classification results have high accuracy in iden-
tifying the aorta but, to a certain extent, misclassify the cardinal
vein and capillary.

Figure 6 depicts the global vascular-type identification results
of four zebrafish embryos, where red and green vessels represent
the aorta and cardinal vein, respectively, and blue vessels repre-
sent the capillaries. Compared with the ground truth, most of
the red aortas are classified accurately, as are the blue capillaries.
In addition, the proposed method classifies the green cardinal
vein in the tail. The overall visual results display the passable con-
tinuity and integrity of the three vascular types.

Segmentation Comparison and Analysis

Further validation of the proposed method was completed by
comparing with seven segmentation algorithms, ViBe (Barnich
& Droogenbroeck, 2011), KNN (Jodoin & Mignotte, 2005),

Table 1. Quantitative Results of the Proposed Method on Each Zebrafish Embryo.

No ACC Precision Recall F1 JS MCC

1 0.9826 0.9281 0.8622 0.8939 0.8082 0.8852

2 0.9755 0.8639 0.7447 0.7998 0.6664 0.7894

3 0.9757 0.7282 0.8469 0.7831 0.6435 0.7728

4 0.9855 0.8692 0.8693 0.8693 0.7688 0.8616

Average 0.9798 0.8474 0.8308 0.8365 0.7217 0.8273
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MOG2 (Zivkovic & Heijden, 2006), DenseUNet, OTSU (Otsu,
2007), K-means (Wang & Pan, 2014), and the watershed algo-
rithm (Li et al., 2010), where ViBe, KNN, and MOG2 are motion-
detection algorithms applied to the videos of blood flow, as shown
in Figure 3a, and DenseUNet, OTSU, K-means, and the watershed
algorithm are image segmentation algorithms applied to the visu-
alized image of the average optical flow field, as shown in

Figure 3c. In this way, we analyzed the performance of the pro-
posed method from both motion-detection and image segmenta-
tion perspectives.

Table 5 shows the quantitative results of the proposed method
and the other algorithms on the zebrafish embryos. The accuracy
of our work is much more superior than that of other algorithms.
Meanwhile, the proposed method achieves the highest F1 score
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Fig. 5. Global segmentation results of four zebrafish embryos.

Table 2. Quantitative Classification Results of the Aortas.

No ACC Precision Recall F1 JS MCC

1 0.9858 0.7283 0.8298 0.7758 0.6337 0.7702

2 0.9827 0.7636 0.4544 0.5698 0.3984 0.5814

3 0.9901 0.6837 0.8062 0.7399 0.5872 0.7375

4 0.9888 0.8139 0.673 0.7368 0.5832 0.7345

Average 0.9869 0.7474 0.6909 0.7056 0.5506 0.7059
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and JS values. It performs the best in terms of the MCC as well.
From both motion-detection and image segmentation perspec-
tives, the proposed method maintains the highest AUC value of
0.9220, indicating that our method separates the two classes (ves-
sel and nonvessel) significantly better than the existing
approaches for all possible threshold values.

Figure 7 shows the visual segmentation results obtained via the
abovementioned algorithms. Figures 7c–7f show the results of the
image segmentation algorithms, including K-means, the water-
shed algorithm, DenseUNet, and OTSU. It is obvious that almost
no capillaries are segmented, and the main vascular structure is
badly discontinuous. Their failure to detect the whole vascular
structure is attributed to the visualized image of the average opti-
cal flow field, which loses the key information of slow motion in
vessels during velocity visualization. Figures 7h–7j show the
results of the motion-detection algorithms, including MOG2,
KNN, and ViBe. Although these methods can detect the rough
shape of the vascular structure, the segmentation results only con-
tain partial information of each vessel with much noise, poor con-
tinuity, and poor integrity. Our proposed method, as shown in
Figure 7g, captures almost all vessels with high continuity and
integrity. These qualitative results demonstrate the superiority of
the proposed method, especially for narrow vessels, as shown in
the red dashed circle. In addition, the proposed method reduces
vessel breakages and background noise, outperforming the other
methods in connectivity.

In summary, compared with the other seven algorithms, the
proposed method achieves outstanding performance. The vessels
in the segmented images produced by our method are more sim-
ilar to the reference, indicating that our method is undoubtedly
the state-of-the-art for transparent vessels.

Frame Temporal Resolution Analysis

The proposed method achieves outstanding performance using
videos with 50 fps as input, of which the sampling interval is

Table 3. Quantitative Classification Results of the Cardinal Veins.

No ACC Precision Recall F1 JS MCC

1 0.9789 0.7843 0.3264 0.461 0.2995 0.4979

2 0.983 0.9084 0.2253 0.361 0.2203 0.4477

3 0.9914 0.9046 0.5551 0.688 0.5244 0.705

4 0.9837 0.7966 0.2329 0.3604 0.2198 0.4255

Average 0.9843 0.8485 0.3349 0.4676 0.3160 0.5190

Table 4. Quantitative Classification Results of the Capillaries.

No ACC Precision Recall F1 JS MCC

1 0.9668 0.4064 0.4378 0.4215 0.267 0.4047

2 0.9652 0.2713 0.415 0.3281 0.1962 0.3185

3 0.9733 0.3337 0.4578 0.386 0.2392 0.3776

4 0.9736 0.2301 0.4139 0.2957 0.1735 0.2962

Average 0.9697 0.3104 0.4311 0.3578 0.2190 0.3493
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Fig. 6. Global vascular-type identification results of four zebrafish embryos, where
red and green vessels represent the aorta and cardinal vein, respectively, and blue
vessels represent the capillaries.
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20 ms. To investigate the effect of worsening frame temporal res-
olution of videos on the performance of our proposed method, we
applied our method to downsampled videos with different sam-
pling intervals ranging from 20 to 640 ms.

Figure 8 shows a plot of the quantitative segmentation results
of the proposed method on videos with different temporal resolu-
tions, where the x-axis denotes the linear value of the sampling
intervals after applying the logarithmic function. When the sam-
pling interval is extended to 320 ms, that is, the temporal resolu-
tion reduces to 3.125 fps, the proposed method maintains an
accuracy of more than 90%. Moreover, the values of AUC, preci-
sion, and F1 all decrease smoothly when the sampling interval of
the input videos increases from 20 to 320 ms but decrease sharply
when the sampling interval is extended to 640 ms.

Figure 9 shows the qualitative segmentation results obtained
on videos with different temporal resolutions. Figures 9a–9k
show that the performance does not obviously decrease, even
when using videos with a 320 ms sampling interval, which is 16
times that of the original videos with 50 fps. Figure 9l indicates
that the more severe loss of time resolution causes obvious vessel
breakage and poor connectivity.

Table 5. Quantitative Comparison With Related Algorithms on Zebrafish Embryos.

Algorithm ACC Precision Recall F1 JS MCC AUC

DenseUNet 0.886 0.9832 0.5178 0.6784 0.5133 0.6639 0.7865

K-means 0.8245 0.9956 0.2452 0.3934 0.2449 0.4453 0.6636

OTSU 0.8098 0.9981 0.1808 0.3062 0.1808 0.3801 0.6262

Watershed 0.8241 0.9903 0.2447 0.3925 0.2441 0.443 0.6565

ViBe 0.828 0.9898 0.2618 0.414 0.2611 0.459 0.723

KNN 0.8939 0.9398 0.5799 0.7173 0.5592 0.6854 0.8389

MOG2 0.9007 0.8922 0.651 0.7527 0.6035 0.706 0.8553

Proposed 0.9798 0.8474 0.8308 0.8365 0.7217 0.8273 0.922

Fi
g.

7
-
Co

lo
ur

on
lin

e,
Co

lo
ur

in
pr
in
t

Fig. 7. Segmentation results of (a) via application of (c) K-means, (d) the watershed algorithm, (e) DenseUNet, and (f) OTSU to the visualized image of the average
optical flow field and application of (g) the proposed method, (h) MOG2, (i) KNN, and ( j) ViBe to the raw video; (b) ground truth of (a).
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Fig. 8. Plot of the quantitative segmentation results of the proposed method on vid-
eos with different temporal resolutions.
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In general, compared with the optimal videos with 50 fps, the
loss in temporal resolution within a certain range only results in a
slight decrease in accuracy and integrity and cannot worsen the
success of the proposed method. The necessary minimal temporal
resolution for successful segmentation is 3.125 fps, that is, the
sampling interval of the video should not exceed 320 ms. This
would enable us to speed up the process and reduce the compu-
tational cost and storage requirements, which is an advantage of
micromanipulation systems.

Discussion

This study aims to achieve automated in vivo transparent vessel
segmentation and identification for further subsequent research,
for example, cardiovascular research (Li et al., 2019) and in vivo
biological micromanipulations (Chan & Liebling, 2015; Menon
et al., 2016; Sun et al., 2021). Our validations show that the pro-
posed method identifies the vascular structure with high connec-
tivity and integrity when applied to zebrafish embryos. The
vascular types are identified with good accuracy, especially the
main vessels, such as the aorta and cardinal vein of the zebrafish
embryo. The proposed method was compared with other segmen-
tation methods. The comparison results indicate the superiority of
our method from both image segmentation and motion-detection
perspectives. The experiments using downsampled videos indicate
that a loss in temporal resolution within a certain range cannot
worsen the success of the proposed method. The necessary min-
imal temporal resolution for successful segmentation is 3.125 fps.

The key to the success of the proposed method is the usage of the
blood flow characteristics and motion features, especially the flow-
connectivity features. We considered the motion of the RBCs and
detected the vessel pixels based on the connectivity information.
Meanwhile, the per-pixel machine learning classifier, that is, the ran-
dom forest, had good adaptation, enhancing the robustness of our
method for different scales of motion in vessels of different sizes.

However, one limitation of the proposed method is its sensitiv-
ity to motion in capillaries. The qualitative segmentation results
show capillaries with less continuity and integrity than the ground
truth. Because velocity normalization during optical flow field
visualization easily leads to the loss in key slow motion information,
especially in capillaries, the visualized image fails to express the full
structure of related vessels. Hence, the image segmentation methods
show less continuity in capillaries. Additionally, motion-detection
algorithms tend to capture instantaneous motion. While it is obvi-
ous that there are no RBCs moving in the capillaries during the
short videos captured, these motion-detection algorithms easily
introduce noise, discontinuity and incompleteness in the segmenta-
tion results. These factors limit the ability of our method to segment
complete capillary structures.

Notably, the partial absence of capillaries in the segmentation
results is beyond the scope of image segmentation research.
Considering the continuity of RBC movement, we will introduce
the vascular connection path reasoning mechanism and combine
RBC kinematics modeling and vascular tracking to obtain a more
complete vascular structure in the future.

Conclusion

In this paper, we present a new machine learning method for
automated in vivo transparent vessel segmentation and identifica-
tion based on blood flow characteristics. Aiming at the fuzzy
edges and the barely noticeable tubular characteristics of the ves-
sels, we deal with the complex transparent vessel segmentation
task by analyzing the motion of RBCs in vessels. The motion fea-
tures of the RBCs are extracted and utilized to classify the vessel
pixels. The characteristics of the blood flow also benefit the iden-
tification of different vascular types.

Taking zebrafish embryos as an example, we conducted quanti-
tative and qualitative transparent vessel segmentation and identifica-
tion experiments. The proposed method achieved a high accuracy of
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Fig. 9. Segmentation results of the proposed method on videos with different temporal resolutions. The sampling intervals are (a) 20 ms (50 fps), (b) 40 ms (25 fps),
(c) 60 ms (16.6 fps), (d) 80 ms (12.5 fps), (e) 100 ms (10 fps), (f) 120 ms (8.3 fps), (g) 140 ms (7.14 fps), (h) 160 ms (6.25 fps), (i) 180 ms (5.5 fps), ( j) 200 ms (5 fps), (k)
320 ms (3.125 fps), and (l) 640 ms (1.5625 fps).
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97.98% in vessel segmentation, indicating the great similarity of the
segmentation result and ground truth. The vascular types were iden-
tified with good accuracy of more than 96%, especially the aorta and
cardinal vein. Compared with seven other algorithms, including seg-
mentation algorithms and motion-detection algorithms, the pro-
posed method achieved the highest accuracy, F1, JS, MCC, and
AUC values, demonstrating its outstanding performance. When
the sampling interval was reduced from 20 to 320 ms, the proposed
method maintained a high accuracy of more than 90%, demonstrat-
ing its good robustness on videos with worsening time resolutions.

However, in the segmentation image of the vascular structure,
the capillaries were not completely continuous. This is mainly
because the visualized image of the average optical flow field
loses key slow motion information in vessels during velocity visu-
alization or there are no RBCs moving in the capillaries during
the short videos. In the future, we will combine the vascular track-
ing method to obtain a more complete vascular structure.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927622000514.
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