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Abstract—The protocol of somatic cell nuclear trans-
fer technology requires oocyte enucleation with a mi-
cropipette. This operation is destructive and critical to
the further development of reconstructed oocytes. As an
aspiration control problem, the viscoelastic property of ex-
tracted material, complicated dynamics, great uncertainty,
and disturbance bring about difficulties on the subject.
To address this issue, this article models the enucleation
process with fractional-order calculus. With the same num-
ber of parameters, it is shown that the fractional-order
models have better fitting performance than integer-order
models. In addition, more terms and more parameters can
be added to fractional-order models, which strengthens
the modeling ability. Based on the identified incommen-
surate fractional-order model, an adaptive sliding mode
controller is proposed to deal with the unknown system pa-
rameters and disturbance. In the numerical simulation, the
fractional-order controller gets a small overshoot (< 5%)
and no oscillation, while the integer-order controller gets a
large overshoot (> 25%) and fast oscillation. Experiments
on the micromanipulation system compare the fractional-
order, integer-order and traditional PID controllers. The
results show that the proposed fractional-order controller
has shorter arrival time, less arrival velocity, less root
mean square error (RMSE), higher success rate and higher
cleavage rate. The higher cleavage rate of the proposed
fractional-order controller means lower damage to oocytes,
which is meaningful for the completion of somatic cell
nuclear transfer.

Index Terms—Micromanipulation, Aspiration control,
Fractional Order, Adaptive Control, Sliding Mode Control,
Somatic Cell Nuclear Transfer.

NOMENCLATURE

x(t) Interface position.
p(t) Decrement of pressure from the balance state.
r(t) Desired trajectory.
e(t) Tracking error.
S Section area of injection micropipette.
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C
t0D

α, Dα Caputo definition of fractional order derivative.
RL
t0 Dα,GL

t0 Dα Riemann-Liouville and Grünwald-Letnikov
definitions of fractional order derivative.

αi, βi Fractional orders, βi = αi + αi−1.
ᾱ Vector of fractional orders.
θ̂ Estimation of θ.
θ System parameter.
am, dm Maximum acceleration and deceleration.
b Gain of system input.
d(t) System disturbance and uncertainty.
k, l,Γ,K Controller gains.
M,α Controller parameters.
n System order.
P,Q,E, ψ Matrix variables of the controller.
um, uM Minimum and maximum of control input.
vm Maximum speed.
xf , tf Desired final position and arrival time.

I. INTRODUCTION

S INCE the first cloned mammal Dolly [1] was created, the
somatic cell nuclear transfer (SCNT) technology has been

influencing the animal breeding and biological research. Faced
with the challenge of resource shortage and increasing demand
for animal products, people use SCNT technology to increase
the global output of livestock products [2]. Many countries
have applied the SCNT technology to commercial livestock
reproduction and preservation [3]. SCNT technology can also
be combined with other recently developed technologies. For
example, SCNT can provide embryonic stem cells (ESCs) for
clinical usage or biological research [4]. After transgenesis,
SCNT can generate animals from genetically modified cells
[5]. Compared to induced pluripotent stem cells (iPSCs),
SCNT shows fewer epigenetic and transcriptomic aberrations
[6], thus better stem cells can be provided. Animal cloning
for pigs provides good models for human medical research,
as well as good donors for organ transplantation into humans.
The success of SCNT in monkeys fills a need for non-human
primate models [7], which could pave the way for tackling
brain diseases [8].

However, the broad usage of SCNT remains limited due
to its high cost and low efficiency in obtaining live and
healthy offspring [5]. SCNT technology mainly involves the
enucleation of oocytes and the injection of somatic cells. Over
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Fig. 1. Microscopic image of enucleation process. By adjusting the gas
pressure p(t), the interface position of extracted material x(t) changes.

the past few years, robotic systems have been developed to
improve the efficiency [9]. The rotation force [10], oocyte ori-
entation [11] and penetration speed [12] have been optimized.
These are open-loop optimizations.

So far, the most common nuclear transfer protocol involves
glass pipettes for enucleation and injection [5]. The enucle-
ation operation needs to tear the genetic material and part of
the cytoplasm apart from the oocyte, which is the most difficult
and destructive step in the SCNT procedure. To realize smooth
enucleation and reduce the damage to the recipient oocyte, the
enucleation process must be better modeled and accurately
controlled.

During the enucleation process, some material in the oocyte
is aspirated into the micropipette (Fig. 1), which can be con-
sidered as an aspiration control problem. Existing aspiration
and positioning methods [13]–[17] deal with cells as a whole,
or consider the cells as elastic solid matters. These methods
model the controlled systems as modified mass-spring-damper
systems, where the mass and damping coefficient may vary
during the process. However, the extracted oocyte material in
the enucleation process is a kind of viscoelastic material and
exhibits more fluid properties [18].

The mass-spring-damper system can be formulated as
second-order differential equations and there are generally
3 equivalent system parameters. When the orders are not
constrained to integers, non-integer-order differential models
can be obtained and more parameters can be added. Such
models are known as ‘fractional’ order models. Fractional-
order derivative has a firm and long-standing theoretical foun-
dation [19] [20] and has been successfully used in several
systems analytically or practically [21], including blood flow
[22], smart material [23], dielectric elastomer actuators [24]
and multiagent systems [25]. It has superiority in model-
ing many complex materials. Cells and other biomaterials
are distributed-parameter systems that exhibit viscoelasticity,
creep, stress relaxation and memory property [26]. A 0.5-
order differential relationship between strain and stress was
obtained for a viscoelastic material [27]. It was observed that
fractional-order differentiation could fit better with empirical
results of such systems with viscoelasticity and memory
property [24] since these structures are essentially distributed-
parameter systems. In addition, the corresponding models have

the advantage in linear viscoelasticity in that fewer parameters
are required while better performance can be achieved [28].
Efficient control of micropipette-based oocyte enucleation
is intractable mainly because of the complex characteristics
of intracellular materials. The materials show viscosity and
elasticity. In the experiments, the extracted materials often
shrink to a sphere under the interfacial tension [29]. The
integer-order spring-damper model is not accurate enough to
model such material, while the fractional-order model can
better describe the viscoelasticity and distributed interfacial
tension. In addition, the mass can be disregarded in this
process because the gravity is much less than gas pressure
variation. So, the integer-order spring-damper model is inap-
propriate to describe the enucleation process. However, due
to the unintuitive characteristic and numerical complexity, the
usage of fractional-order models and controllers is still limited
[19]. The fractional-order sliding mode controllers have been
designed for linear motors [30] and quadcopters [31] [32].
These systems are essentially integer-order systems. To the
best of the author’s knowledge, most of the previously applied
controllers were designed for commensurate fractional-order
systems where the orders are the same, or the models were
approximated to integer-order models [24]. Few studies have
applied the incommensurate fractional-order model in practice
[33] [34] and some of them restrict the orders of the system
model where the orders αi = 1(1 ≤ i ≤ n − 1). The
application of incommensurate fractional-order models is still
limited.

A challenge in enucleation control is complex dynamics,
high diversity, great uncertainty and disturbance. Cell inner
pressure [35], capillary force [36], and the viscosity of oocytes
and culture medium [17] all influence the enucleation process.
These parameters vary among different experiments. Addi-
tionally, micropipettes may be blocked by contaminants. The
major advantage of sliding mode control is low sensitivity
to plant parameter uncertainties and disturbances, which are
significant during the enucleation operation.

Considering the above, this article first identifies fractional-
order models of the pneumatic enucleation process based
on experimental data, and the fractional-order models are
compared with integer-order models of the same number of
parameters, indicating the superiority of the fractional-order
model. Secondly, these fractional-order models are unified and
formulated into a multivariable linear fractional-order model
with unknown parameters and disturbance. Furthermore, a
fractional-order adaptive sliding mode controller (FOASMC)
is designed to deal with unknown parameters and system
disturbance. Finally, simulations and experiments are per-
formed to validate the fractional-order controller. Compared
with the existing studies, the contributions of this article are
summarized as follows:

1) The oocyte enucleation process was modeled with
fractional-order differentiation, which is able to capture
the viscoelastic behavior with fewer parameters and
better performance. Results of fitting with integer- and
fractional-order differentiation demonstrate the superior-
ity of fractional-order models.

2) An adaptive sliding mode controller was designed for
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Fig. 2. The illustration of micropipette oocyte enucleation process.

Fig. 3. The fractional Kelvin-Voigt-like model.

the incommensurate fractional-order system, where the
fractional orders are different. The stability of the con-
trolled system is proven. Simulations demonstrate the su-
periority of fractional-order controllers over integer-order
controllers. Experiments on porcine oocytes validate the
proposed controller.

The rest of this article is organized as follows. Section II
numerically models the overall dynamics of oocyte enucleation
and formulates the control problem. The fractional-order mod-
els are compared with integer-order models. Section III gives
the controller design and the proof of stability. In Section IV,
the model is validated by simulations and experimental results.
At last, Section V concludes this article.

II. SYSTEM MODEL

The configuration of the micropipette-based oocyte enucle-
ation system is depicted in Fig. 2. The oocyte is fixed by
the holding micropipette and penetrated by another thinner
micropipette (20µm). The pipettes are connected to pneumatic
pumps which are driven by motors. The motors communicate
with an industrial personal computer (IPC) through self-
developed software. During the oocyte enucleation process, the
pressure in the micropipette is adjusted by moving the syringe
piston which is connected to a motor. When the pressure in
the micropipette decreases, the pressure in the environment
squeezes the cytoplasm out of the oocyte. When the amount
in the micropipette is sufficient to remove the genetic material
in the oocyte, i.e. the interface position x arrives at the target

position, the micropipette withdraws from the oocyte and the
enucleation process is completed.

If the extracted material is considered as elastic solid
material, the displacement is proportional to the external force.
The constitutive relation is formulated as:

x(t) ∝ p(t)S, (1)

where x(t) is the interface position, p(t) is the decrement
of pressure from the balance state and S is the section area.
If the material is considered as viscous fluid, the velocity is
proportional to the external force. The constitutive relation is:

ẋ(t) ∝ p(t)S, (2)

Note that the stress is proportional to the zeroth derivative of
strain for elastic material and to the first derivative of strain
for viscous material. For the viscoelastic material, it is natural
to suppose that the stress is proportional to the strain of the
order between zero and one [37], which was analyzed with
molecular theory [28]. Here we use the definition of Caputo
[38] for fractional-order differentiation:

t0Dα
t f(t) =

1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)1+α−m
dτ, (3)

where α is the order of differentiation, m−1 < α < m,α ∈ R,
m ∈ Z+, Γ(s) =

∫∞
0
ts−1e−tdt. t0Dα

t [·] is the symbol of
fractional-order differentiation. Because t0 is considered to be
zero by default, t0 and t are omitted in the following context.
The constitutive relation of fractional viscoelastic element is:

Dαx(t) ∝ p(t)S. (4)

Considering the fractional-order Kelvin–Voigt model [39] that
is depicted in Fig. 3, the constitutive relation is:

n∑
i=1

ηiDαix(t) = p(t)S. (5)

Where ηis and αis are element parameters. The interface is
stationary before the operation, i.e. x(t) = 0,∀t ≤ 0. There are
different types of injection systems, and p(t) is approximately
linear to the position of syringe piston. Therefore, we regard
p(t) as control input and x(t) as output. To test the superiority
of fractional-order models over integer-order models, several
experiments were performed to collect data.

Considering (5), the relationship of p(t) and x(t) can be
formulated as X(s)

P (s) = G(s), where X(s) and P (s) are Laplace
transform of x(t) and p(t), G(s) is a rational fraction of
s. Previously, the denominator of G(s) was considered as
a quadratic polynomial. But fractional-order differentiation
allows deviation from the quadratic polynomial. A small
deviation is added to the orders to get a fractional-order model
and keep the number of tunable parameters the same. The
following form of integer-order and fractional-order transfer
functions Gio−2(s) and Gfo−2(s) are considered:

Gio−2(s) =
1

ai2s2 + ai1s+ ai0
,

Gfo−2(s) =
1

af2s2.2 + af1s1.1 + af0
,

(6)
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where aik, afk(k = 0, 1, 2) are constant coefficients to be
determined. Given the transfer functions and control input
p(t), the simulated output of Gio−2(s) and Gfo−2(s) are
defined as [40]:

xio−2(ti) =
pi −

∑2
k=0

aik

hk

∑i
j=1 w

(k)
j xio−2(ti−j)∑2

k=0
aik

hk

xfo−2(ti) =
pi −

∑2
k=0

afk

h1.1k

∑i
j=1 w

(1.1k)
j xfo−2(ti−j)∑2

k=0
afk

h1.1k

(7)
where ti+1 − ti = h, h is the step size, pi is the sampled

value of pressure at ti. w
(α)
j can be evaluated recursively:

w
(α)
0 = 1, w

(α)
j =

(
1− α+ 1

j

)
w

(α)
j−1, j = 1, 2, · · · (8)

Remark 1. Equation (7) uses the definition of Grünwald-
Letnikov fractional derivative. For a wide class of functions
which appear in real physical and engineering applications,
Riemann-Liouville and Grünwald-Letnikov definitions of frac-
tional order derivative are equivalent [20]. The relationship
of Caputo and Riemann–Liouville derivative [41] is

C
t0D

αx(t) = RL
t0 Dαx(t)−

n−1∑
j=0

x(j) (t0) (t− t0)
j−α

Γ(j − α+ 1)
,

where n = [α] + 1. Because the inner material of oocyte
keeps static before the operation, the initial condition of system
output x(t) is x(j)(t0) = 0, j = 0, 1, . . . , n− 1. Therefore, the
second term in the right side of the equation above is 0. Thus,

C
t0D

αx(t) = RL
t0 Dαx(t) = GL

t0 Dαx(t).

where C
t0D

α, RL
t0 Dα and GL

t0 Dα are Caputo, Riemann-Liouville
and Grünwald-Letnikov definitions of fractional order deriva-
tive respectively.

Based on the data obtained from enucleation experiments,
optimal Gio−2(s) and Gfo−2(s) are searched out with pre-
scribed constraints. The optimal value a∗

io−2 and a∗
fo−2 are

defined in the sense of least mean square:

a∗
io−2 = argmin

aio−2

n∑
i=0

(xio−2(ti)− xi)
2,

a∗
fo−2 = argmin

afo−2

n∑
i=0

(xfo−2(ti)− xi)
2,

(9)

where xi is the sampled value of interface position at ti.
aio−2 = (ai0, ai1, ai2),afo−2 = (af0, af1, af2) and the
corresponding transfer functions are G∗

io−2(s) and G∗
fo−2(s).

With the same initial guess of parameters, the trust region
reflective algorithm solves a∗

io−2 and a∗
fo−2. The simulated

response to p(t) of G∗
io−2(s) and G∗

fo−2(s) are plotted in Fig.
4 for example. It is observed that the fractional-order model
has a smaller error.

Moreover, infinite items of orders below a certain number
can be added, which strengthens the modeling ability, while
avoiding introducing large noises. We further demonstrate that
the fractional orders can also be adjusted and optimized,
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Fig. 4. Identified integer-order model output (blue), fractional-order
model output (red) and experimental data (dashed) of group 5. The
fractional-order model has a smaller error.
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producing better results. Gfo−free(s) is constrained in the
following form:

Gfo−free(s) =
1

a3sβ3 + a2sβ2 + a1sβ1 + a0sβ0
. (10)

where βi ∈ [0, 3.5], i = 0, 1, 2, 3. The MATLAB toolkit FOM-
CON [42] provides a tool to identify the fractional-order trans-
fer function based on time-domain data. Using the Grunwald-
Letnikov method and trust-region-reflective algorithm [43], all
identified orders are rational due to the digital computation.
The results are compared with 3-parameter integer-order (io-
2) and fractional-order (fo-2) models in Fig. 5. For example,
the identified model of group 2 is

G∗
fo−free(s) =

1

7.08s2.78 − 5.07s2.42 + 2.44s1.34 − 0.24s0.36
(11)

Remark 2. From Fig. 5, the average R2 value of iden-
tified fractional-order models (0.9370) is greater than that
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of the integer-order models (0.9237), and the average root
mean square error (RMSE) value of identified fractional-
order models (7.6827) is smaller than that of integer-order
models (9.3260), indicating the fractional-order models fit
the enucleation process more accurately. This is attributed to
its superiority in the modeling of viscoelasticity and memory
behavior. This model works like a fuzzy system or a neural
network, with its nature that can describe the viscoelasticity
well. A little variation of the fractional orders has little impact
on the whole system. The identified fractional-order model of
the group 2 is set as the system model in the simulation due to
its minimum RMSE value. The models are incommensurate,
which means βi = λiβ0, i > 0, λi ∈ Z+ does not hold.
The usual stability analysis of incommensurate fractional-
order systems involves the complicated LMI. And it is time-
consuming to solve the LMIs in the application. To the author’s
knowledge, there are few applications of the incommensurate
fractional order models. Many works focus on the stability
analysis of such systems. The design of sliding mode control
for high-order fractional-order systems is lacking.

Let x1(t) = x(t) denote the current position of the interface.
Taking the matched and unmatched disturbance into account,
system (5) can be reformulated as:

Dαixi(t) = xi+1(t), i = 1, 2, ..., n− 1

Dαnxn(t) = θTx(t) + bu(t) + d(t)

y(t) = x1(t),

(12)

where n is the system order, xi(t), i = 1, 2, ..., n are state
variables, x(t) = [x1(t), x2(t), ..., xn(t)]

T , αi, i = 1, 2, ..., n
are fractional orders, u(t) is the system control input, which is
a scale, d(t) is the matched and unmatched disturbance, y(t) is
the system output, which is also a scale and should follow a
designed trajectory r(t). θ = [θ1, θ2, ..., θn]

T is the system
parameter. 0 < αi < 1, i = 1, 2, ..., n, and the following
assumptions hold: b > 0, so that the positive u(t) causes
the increment of x(t). The disturbance d(t) is bounded, i.e.
∃M < +∞,∀t, |d(t)| < M .

III. CONTROLLER DESIGN

In order to design a proper controller for the incommen-
surate fractional-order system and prove the stability, two
lemmas are provided.
Lemma 1 [44] For an incommensurate fractional-order system
Dᾱx(t) = Ax(t), The zero point of this system is Lyapunov
globally asymptotically stable if all the roots λs of the equation∣∣∣∣∣∣∣∣∣

λmα1 − a11 −a12 . . . −a1n
−a21 λmα2 − a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . λmαn − ann

∣∣∣∣∣∣∣∣∣ = 0 (13)

satisfies |arg(λ)| > π/2m, where ᾱ = [α1, α2, ..., αn]
T ,

Dᾱx(t) = [Dα1x1(t), Dα2x2(t), ...,Dαnxn(t)]
T , A =

(aij)n×n, m is the least common multiple of denominators
uis of αis, αi = vi/ui, (ui, vi) = 1, ui, vi ∈ Z+, i = 1, ..., n.
Lemma 2 For a given vector function v(t) =
[v1(t), ..., vn(t)]

T such that limt→+∞ ∥v(t)∥ = 0,

and state vector x = [x1, ..., xn]
T which varies as

Dᾱx(t) = Ax(t) + v̇(t). If A and ᾱ satisfy stable
condition in Lemma 1, then limt→+∞ xi(t) = 0, i = 1, ..., n.
See the proof in the Appendix.

A. Fractional Order Adaptive Sliding Mode Controller
Given a desired trajectory r(t), and let tracking error be

e1(t) = e(t) = r(t)− y(t), denote with ei+1 = Dαiei(t), i =
1, 2, ..., n, e(t) = [e1(t), e2(t), ..., en(t)]

T , β0 = 0, βk =∑k
i=1 αi = βk−1 + αk, k = 1, 2, ..., n, the dynamics of error

eis can be obtained as follows:

Dαiei(t) = ei+1, i = 1, 2, ..., n− 1. (14)

Using (12), we can get

Dαnen(t) = Dβnr(t)−Dβnx(t)

= Dβnr(t)−Dαnxn(t)

= Dβnr(t)− θTx(t)− bu(t)− d(t).

(15)

It is assumed that the designed trajectory satisfies that all
Dβir(t)s are bounded, i.e. Dβir(t) ∈ L∞. With Lemma 1,
we hope to obtain

Dᾱe(t) = Aee(t), (16)

where Ae satisfies the stable condition, such that the tracking
error e(t) converge to zero. Considering equation (14), Ae is
like

Ae =


0 1 0 · · · 0

0 0 1 · · ·
...

...
...

. . . . . . 0
0 0 · · · 0 1

−k1 −k2 −k3 . . . −kn

 , (17)

where kis are to be determined. Denote with K =
[k1, ..., kn]

T , equation (16) and (17) indicates that system input
should make Dαnen(t) = −

∑n
i=1 kiei(t) = −KTe(t).

We thus design the sliding mode surface as

s(t) =

∫ t

0

(KTe(t) +Dαnen(t))dt. (18)

When ṡ(t) = 0, we get ueq(t) = 1
b (K

Te(t) + Dβnr(t) −
θTx(t) − d(t)). Considering the parameter uncertainty, we
design the control input as follows.

u(t) =
1

b
(KTe(t) +Dβnr(t)− θ̂T (t)x(t)

+ ks(t) + sgn(s(t))M),

θ̂(t) = θ − θ̃(t),

˙̂θ = Γ(xs− α
PET

||E||
).

(19)

where P and E are defined with
Ṗ = −lP + xxT , P (0) = 0,

Q̇ = −lQ+ x(Dβnr(t) +KTe(t)− bu(t)− ṡ)T , Q(0) = 0,

E = θ̂TP −Q = −θ̃TP + ψ,

ψ = −
∫
e−l(t−τ)d(τ)xT (τ)dτ.

(20)
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Fig. 6. Block diagram of the system.

θ̂(t) is the estimate of θ, θ̃(t) is the estimation error, Γ is
a symmetric positive definite matrix, k, α and l are positive
constants. The block diagram of the system is shown in Fig.
6.

B. Stability Analysis

Let the Lyapunov function be

V =
1

2
s2 +

1

2
EP−1Γ−1P−1ET , (21)

then

V̇ = sṡ+ EP−1Γ−1 ˙(P−1ET )

= s(Dβnr +KTe− θTx− d− (Dβnr +KTe− θ̂Tx

+ ks+Msgn(s))) + EP−1Γ−1 ˙(P−1ET )

= − ks2 −M |s| − ds− θ̃Txs

+ EP−1Γ−1(
˙̂
θ + ˙(P−1ψT ))

= − ks2 −M |s| − ds− θ̃Txs

+ EP−1(xs− α
PET

||E||
+ Γ−1ξ)

= − ks2 −M |s| − ds+ ψP−1xs− α||E||
+ EP−1Γ−1ξ

≤ − (M − |d| − |ψ| · ||P−1|| · ||x||)|s|
− (α− ||P−1|| · ||Γ−1|| · |ξ|)||E||,

(22)
where ξ = ˙(P−1ψT ). It can be proved that there exist
ℏ, σ, δ, T > 0 such that for each t > T , the following
inequalities hold [45]:

|d| ≤ dM , |ψ| ≤ ℏ,
P ≥ σI, |ξ| ≤ δ.

Therefore,

V̇ ≤ −(M − |d| − |ψ| · ||P−1|| · ||x||)|s|−
(α− ||P−1|| · ||Γ−1|| · |ξ|)||E||

≤ −(M − dM − ℏ||x||
σ

)|s| − (α− δλmax(Γ
−1)

σ
)||E||.

(23)
Choose M,α such that

M − dM − ℏ||x||
σ

≥ 0,

α− δλmax(Γ
−1)

σ
≥ 0.

(24)

Then
V̇ ≤ −a

√
V , (25)

where

a = 2min{M − dM − ℏ||x||
σ

,

σ2(α− δλmax(Γ
−1)

σ
)/λmax(Γ

−1)}.
(26)

Add we can get V converges to zero in finite time, so s
converges to zero in finite time. Using Lemma 1, we can get
the error e globally asymptotically converges to zero.

Remark 3. The adaption law can be simplified as ˙̂
θ =

Γxs. Let the Lyapunov function be V2(t) = 1
2s

2(t) +
1
2 θ̃

T (t)Γ−1θ̃(t), we can get V̇2(t) ≤ −ks2(t) ≤ 0. So, V̇ (t)
is semi-negative definite, which implies V (t) ≤ V (0), s(t)
and θ̃(t) are bounded. Also, V̇ (t) = 0 =⇒ s(t) = 0.
According to LaSalle’s principle, we have lim

t→+∞
s(t) = 0.

By using Lemma 2, we get lim
t→+∞

ei(t) = 0, i = 1, ..., n, so

ei(t)s are bounded. In addition,

Dβir(t), s(t), θ̃(t), ei(t) ∈ L∞ =⇒ xi(t), θ̂(t) ∈ L∞

=⇒ u(t) ∈ L∞.
(27)

Thus the designed controller is globally asymptotically stable,
and all the signals in the loop are bounded.

IV. SIMULATIONS AND EXPERIMENTS

A. Simulations
To validate the proposed controller and protect the

equipment from possible damage, simulations on MAT-
LAB/Simulink are performed.

The desired trajectory is set as a function that accelerates
at the highest acceleration am at first, then travels at constant
speed vm, and finally decelerates at the maximum deceleration
dm to 0. At the same time, it travels from 0 to xf at tf .
In the real system, the input u(t) is limited because motors
have boundary positions and maximum speed. We add this
constraint in the simulation as well for comparison, which is
formulated as um ≤ u(t) ≤ uM . The disturbance is set as
d(t) = 1.5 sin(t), and the upper bound is set as M = 2.

The controlled system is set as (11). Four controllers
(IOASMC-2, FOASMC-2, FOASMC-custom, CFOASMC-
custom) are adopted to control the system. In practice, the
exact orders of real systems vary in different experiments.
Therefore, the prescribed orders are set different from the
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controlled system. For the integer-order adaptive sliding mode
controller IOASMC-2, prescribed orders are ˆ̄αio−2 = [1, 1].
For the FOASMC-2, prescribed orders are ˆ̄αfo−2 = [1.1, 1.1].
For the FOASMC-custom, the orders are ˆ̄αfo−custom =
[0.4, 0.8, 0.6, 0.4, 0.6]. The trajectory parameters, model pa-
rameters and controller parameters are listed in TABLE I. For
constrained FOASMC-custom (CFOASMC-custom), uM =
300 and um = −300. For other three controllers, there are
no constraints on u(t).

Remark 4. Except for the orders, all the tunable parameters
of IOASMC-2 and FOASMC-2 are the same.

TABLE I
PARAMETERS OF TRAJECTORY, MODEL AND CONTROLLERS

Symbol Value Symbol Value
am 20 α 10
dm 20 M 2
vm 30 uM 300
xf 80 um −300
tf 5 d(t) 1.5 sin(t)
k 10 n 5
l 1 b 0.1412

Symbol Value
ᾱT [0.36, 0.98, 0.66, 0.42, 0.36]
θT [0, 0.0339,−0.3446, 0, 0.7161]

ˆ̄α
T [1, 1](io-2), [1.1, 1.1](fo-2)

[0.4, 0.8, 0.6, 0.4, 0.6](fo-custom)

θ̂T (0)
[1,1] (io-2, fo-2)

[1,1,1,1,1] (fo-custom)

KT [2, 2] (io-2, fo-2)
[2, 10, 20, 10, 10](fo-custom)

Γ
diag([0.001, 0.001]) (io-2, fo-2)

diag([0.001, 0,001, 0.0001, 0.0001, 0.0001])

In the identification step, the parameter b is also supposed
to be optimized, which means it is unknown. But for the
enucleation system, when u(t) is positive, state variable x(t)
never decelerates, which indicates b ≥ 0. If b = 0, the term
is omitted. Therefore, b > 0 is guaranteed. The value of b
can also be estimated according to the system dynamics. In
the following simulations, b is unknown and is estimated as
b̂ = 1. Due to the good modeling ability of the fractional-
order model with multiple terms, it is supposed to be able to
approximate the controlled system locally.

For the IOASMC-2, simulation results of the real trajectory
x(t) and the target trajectory r(t) are plotted in Fig. 7.
The overshoot is large (> 25%) and the trajectory oscillates
fast and greatly. It is attributed to the poor modeling ability
for essentially fractional-order systems. In Fig. 7, the real
trajectories x(t)s and the target trajectories r(t)s of FOASMC-
2, FOASMC-custom with and without constraints are plotted.
The results show that the overshoot of FOASMC-2 is small
(< 5%), and the trajectory has no oscillation. The overshoot
of FOASMC-custom is negligible (≈ 0.1%), and the trajectory
has no oscillation. For the FOASMC-custom with b̂ = 1 and
the input constraint imposed, the overshoot is also negligible
(≈ 0.1%) and the trajectory has no oscillation.
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Fig. 7. Trajectories of IOASMC-2, FOASMC-2 and FOASMC-custom.

Remark 5. From the simulation results, it is observed that
fractional-order controllers do have superiorities over integer-
order controllers. With smaller overshoot and shorter settling
time, they perform well even with b unknown, as long as the
sign of b is determined. Because of the poor modeling ability
of the integer-order models, the corresponding controllers get
large overshoot and great oscillation.

B. Experiments
The micromanipulation system is similar to that mentioned

in [9]. As shown in Fig. 8, the system consists of an inverted
optical microscope (Olympus, IX-53) with a motorized X-
Y stage. A camera (Basler, acA640-120gm) is connected to
the microscope for visual feedback. On the left side of the
microscope, a micromanipulator (Sutter Instrument, MP285A)
is mounted on the anti-vibration table to manipulate the
holding micropipette. On the right side of the microscope, an-
other micromanipulator (Scientifica, PatchStar) is mounted to
manipulate the injection micropipette. A holding micropipette
is connected to a syringe, controlled by a stepper motor. An
injection micropipette is connected to a pump (Eppendorf,
CellTram® 4r Air) controlled by a motor (Tamagawa, TBL-
iII).

After holding the oocyte, the injection micropipette is
manipulated to penetrate the oocyte. Then the gas pressure
in the injection micropipette is adjusted by adjusting the
motor velocity as equation (19). The enucleation operation
is completed by a C++ program totally. Instead of directly
controlling the pressure which is approximately linear to the
syringe motor position, we control the motor velocity at a
frequency of 20 Hz.

IOASMC-2, FOASMC-custom and a PID controller are
tested. The parameters of IOASMC-2 and FOASMC-custom
are listed in TABLE I. For all controllers, system input
u(t)s are constrained to between um and uM . For the PID
controller, kp = 0.01, ki = 0.0001, kd = 0.15. The sampling
time is 0.05 s. The detection of the interface position in the
experiment is not accurate, so if r(t) is set close to 0 in the
beginning, the sign of e changes dramatically. Additionally,
due to high viscosity, the interface position remains at zero
until the pressure reaches the threshold. Therefore, in each
experiment, r(t) is set as a constant, which is determined by
the sizes of the oocytes and micropipette.
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Fig. 8. Robotic SCNT system. (1) inverted microscope; (2) motorized stage; (3) camera; (4) micromanipulator (Sutter Instrument, MP285A); (5)
micromanipulator (Scientifica, PatchStar); (6) syringe for holding oocyte; (7) motorized pump;

With given negative pressure, a certain amount of material in
the oocyte is aspirated into the micropipette. In the enucleation
process, as long as the interface position arrives at the target
position, the micropipette withdraws from the oocyte and
the enucleation process is finished. But in order to test the
steady state performance, the command of withdrawing the
micropipette is emitted by the operator with a click of the
corresponding button in the user interface.

Extensive experiments are carried out to compare the
FOASMC with IOASMC and traditional PID controller. TA-
BLE II shows the performance of each controller. The ‘arrival
time’ is the first time when the interface arrives at the
target position. High velocity during the withdrawal of the
micropipette causes more loss than expected, which should be
avoided. The RMSE is the root mean square error between r(t)
and y(t). In some experiments, the interface position does not
change after a long time (one minute) or the pressure increases
so that the oocyte is destroyed, which is considered a failure.
The target positions are normalized and the corresponding
trajectories for these controllers are illustrated in Fig. 9. The
results indicate that FOASMC is superior to IOASMC and
PID controller, with shorter arrival time, less arrival velocity,
less RMSE value and the highest success rate. PID controller
takes a much longer time, which may be attributed to high
diversity of oocytes. Due to bad fitting ability, the IOASMC
gets the lowest success rate.

To further compare the efficiency of IOASMC and
FOASMC in oocyte development, three groups of oocytes
were enucleated with IOASMC and FOASMC successfully
and cultured to the cleavage stage.

TABLE III lists the cleavage rate of IOASMC and
FOASMC after the enucleation. The IOASMC gets the cleav-
age rate of 38.04%, while the FOASMC gets a significantly
higher cleavage rate of 49.45%. These experiments demon-
strate the superiority of the proposed fractional-order sliding
mode controller.
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Fig. 9. Trajectories in the experiment. For different controllers, the target
positions are different. They are normalized in this figure.

TABLE II
PERFORMANCE COMPARISON OF FOASMC, IOASMC AND PID

Average value FOASMC IOASMC PID
Arrival time 5.01 s 8.37 s 18.72 s

Arrival velocity 92.14 µm/s 158.78 µm/s 106.05 µm/s
RMSE 109.95 186.57 164.61

Success Rate 67/67=100% 29/49=59.18% 56/62=90.32%

V. CONCLUSION

Oocyte enucleation with the micropipette is an important
and difficult problem due to its complicated viscoelastic prop-
erty, significant uncertainty and disturbance. This article iden-
tifies fractional-order models of the micropipette enucleation
process based on experimental data. These models demonstrate

TABLE III
CLEAVAGE RATE AFTER ENUCLEATION WITH IOASMC AND FOASMC

Group IOASMC FOASMC
1 8/30=26.67% 12/29=41.38%
2 18/31=58.04% 21/32=65.63%
3 9/31=29.03% 12/30=40.00%

Average 35/92=38.04% 45/91=49.45%
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superior performance compared to integer-order models with
the same number of tunable parameters. Based on the identi-
fied model, an adaptive sliding mode controller is developed
for the incommensurate fractional-order system. FOASMC
and IOASMC are simulated and compared with each other.
With the same tunable parameters, FOASMC exhibits great
superiority over IOASMC. IOASMC has a large overshoot
(> 25%) and oscillates fast and greatly, while FOASMC has
a slight overshoot (< 5%) and no oscillation is displayed.
Experiments on the self-developed micromanipulation system
show that the proposed incommensurate fractional-order slid-
ing mode controller is faster and more accurate than integer-
order controller and traditional PID controller. The highest
success rate and cleavage rate of FOASMC also demonstrate
the value of application on somatic cell nuclear transfer.

There are still some limitations of this work. The model
is identified based on the collected data, so the physical
parameters cannot be integrated into the model directly. In
addition, the constraint of the control input is not considered
in the controller design section, which may degrade the perfor-
mance of the controller. In addition, only the parallel fractional
Kelvin–Voigt model is considered and a more generalized
model [39] could be further adopted.

VI. APPENDIX

Proof of Lemma 2. Taking the Laplace transform of
Dᾱx(t) = Ax(t) + v̇(t) gives

sα1X1(s)− sα1−1x1(0) =

n∑
j=1

a1jXj(s) + sV1(s)

− v1(0),

sα2X2(s)− sα2−1x2(0) =

n∑
j=1

a2jXj(s) + sV2(s)

− v2(0),

. . .

sαnXn(s)− sαn−1xn(0) =

n∑
j=1

anjXj(s) + sVn(s)

− vn(0).
(28)

where Xi(s) and Vi(s) are the Laplace transform of xi(t)
and vi(t), i = 1, 2, ..., n. Equation 28 can be rewritten as

∆(s) ·


X1(s)
X2(s)

...
Xn(s)

 =


b1(s)
b2(s)

...
bn(s)

 , (29)

in which 
b1(s) =s

α1−1x1(0) + sV1(s)− v1(0)

b2(s) =s
α2−1x2(0) + sV2(s)− v2(0)

· · · · · ·
bn(s) =s

αn−1xn(0) + sVn(s)− vn(0),

(30)

∆(s) =


sα1 − a11 −a12 · · · −a1n
−a21 sα2 − a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · sαn − ann

 .

(31)
Multiplying s on both sides of Equation 29 gives

∆(s) ·


sX1(s)
sX2(s)

...
sXn(s)

 =


sb1(s)
sb2(s)

...
sbn(s)

 . (32)

Based on the final-value theorem of the Laplace transform,
we have

lim
s→0,Re(s)≥0

sVi(s) = lim
t→+∞

vi(t) = 0. (33)

If all roots of the equation det(∆(s)) = 0 lie in the open
left half complex plane, i.e., Re(s) < 0, then we consider
Equation (32) in Re(s) ≥ 0. In this restricted area, we have

lim
s→0,Re(s)≥0

sbi(s) = lim
s→0,Re(s)≥0

(sαixi(0)

+ s2Vi(s)− svi(0)) = 0,
(34)

where i = 1, 2, ..., n. ∆(s) has full rank in Re(s) ≥ 0.
Therefore, the unique solution sXi(s), i = 1, 2, ..., n exists in
this area, and we have

lim
t→+∞

xi(t) = lim
s→0,Re(s)≥0

sXi(s) = 0.
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